This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 39

2015 Middle European Mathematical Olympiad, 4

Find all pairs of positive integers $(m,n)$ for which there exist relatively prime integers $a$ and $b$ greater than $1$ such that $$\frac{a^m+b^m}{a^n+b^n}$$ is an integer.

2010 Contests, 1

Let $a,b$ be two positive integers and $a>b$.We know that $\gcd(a-b,ab+1)=1$ and $\gcd(a+b,ab-1)=1$. Prove that $(a-b)^2+(ab+1)^2$ is not a perfect square.

2013 Finnish National High School Mathematics Competition, 2

In a particular European city, there are only $7$ day tickets and $30$ day tickets to the public transport. The former costs $7.03$ euro and the latter costs $30$ euro. Aina the Algebraist decides to buy at once those tickets that she can travel by the public transport the whole three year (2014-2016, 1096 days) visiting in the city. What is the cheapest solution?

2009 IberoAmerican, 5

Consider the sequence $ \{a_n\}_{n\geq1}$ defined as follows: $ a_1 \equal{} 1$, $ a_{2k} \equal{} 1 \plus{} a_k$ and $ a_{2k \plus{} 1} \equal{} \frac {1}{a_{2k}}$ for every $ k\geq 1$. Prove that every positive rational number appears on the sequence $ \{a_n\}$ exactly once.

Russian TST 2018, P3

Let $p$ be an odd prime number and $\mathbb{Z}_{>0}$ be the set of positive integers. Suppose that a function $f:\mathbb{Z}_{>0}\times\mathbb{Z}_{>0}\to\{0,1\}$ satisfies the following properties: [list] [*] $f(1,1)=0$. [*] $f(a,b)+f(b,a)=1$ for any pair of relatively prime positive integers $(a,b)$ not both equal to 1; [*] $f(a+b,b)=f(a,b)$ for any pair of relatively prime positive integers $(a,b)$. [/list] Prove that $$\sum_{n=1}^{p-1}f(n^2,p) \geqslant \sqrt{2p}-2.$$

2009 Harvard-MIT Mathematics Tournament, 2

Suppose N is a $6$-digit number having base-$10$ representation $\underline{a}\text{ }\underline{b}\text{ }\underline{c}\text{ }\underline{d}\text{ }\underline{e}\text{ }\underline{f}$. If $N$ is $6/7$ of the number having base-$10$ representation $\underline{d}\text{ }\underline{e}\text{ }\underline{f}\text{ }\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, find $N$.

2011 Turkey Team Selection Test, 1

Let $\mathbb{Q^+}$ denote the set of positive rational numbers. Determine all functions $f: \mathbb{Q^+} \to \mathbb{Q^+}$ that satisfy the conditions \[ f \left( \frac{x}{x+1}\right) = \frac{f(x)}{x+1} \qquad \text{and} \qquad f \left(\frac{1}{x}\right)=\frac{f(x)}{x^3}\] for all $x \in \mathbb{Q^+}.$

1996 All-Russian Olympiad, 2

On a coordinate plane are placed four counters, each of whose centers has integer coordinates. One can displace any counter by the vector joining the centers of two of the other counters. Prove that any two preselected counters can be made to coincide by a finite sequence of moves. [i]Р. Sadykov[/i]

2023 Tuymaada Olympiad, 6

An $\textit{Euclidean step}$ transforms a pair $(a, b)$ of positive integers, $a > b$, to the pair $(b, r)$, where $r$ is the remainder when a is divided by $b$. Let us call the $\textit{complexity}$ of a pair $(a, b)$ the number of Euclidean steps needed to transform it to a pair of the form $(s, 0)$. Prove that if $ad - bc = 1$, then the complexities of $(a, b)$ and $(c, d)$ differ at most by $2$.

2003 AMC 10, 16

What is the units digit of $ 13^{2003}$? $ \textbf{(A)}\ 1 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

1998 All-Russian Olympiad, 8

Two distinct positive integers $a,b$ are written on the board. The smaller of them is erased and replaced with the number $\frac{ab}{|a-b|}$. This process is repeated as long as the two numbers are not equal. Prove that eventually the two numbers on the board will be equal.

2016 IMO, 4

A set of positive integers is called [i]fragrant[/i] if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$ is fragrant?

2005 Korea National Olympiad, 1

For two positive integers a and b, which are relatively prime, find all integer that can be the great common divisor of $a+b$ and $\frac{a^{2005}+b^{2005}}{a+b}$.

2016 IMO Shortlist, N3

A set of positive integers is called [i]fragrant[/i] if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$ is fragrant?