This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

VMEO III 2006 Shortlist, N13

Prove the following two inequalities: 1) If $n > 49$, then exist positive integers $a, b > 1$ such that $a+b=n$ and $$\frac{\phi (a)}{a}+\frac{\phi (b)}{b}<1$$ 2) If $n > 4$, then exist integer integers $a, b > 1$ such that $a+b=n$ and $$\frac{\phi (a)}{a}+\frac{\phi (b)}{b}>1$$

2014 India IMO Training Camp, 1

Let $p$ be an odd prime and $r$ an odd natural number.Show that $pr+1$ does not divide $p^p-1$

2024 CIIM, 3

Given a positive integer \(n\), let \(\phi(n)\) denote the number of positive integers less than or equal to \(n\) that are relatively prime to \(n\). Find all possible positive integers \(k\) for which there exist positive integers \(1 \leq a_1 < a_2 < \dots < a_k\) such that: \[ \left\lfloor \frac{\phi(a_1)}{a_1} + \frac{\phi(a_2)}{a_2} + \dots + \frac{\phi(a_k)}{a_k} \right\rfloor = 2024 \]

2014 India IMO Training Camp, 1

Let $p$ be an odd prime and $r$ an odd natural number.Show that $pr+1$ does not divide $p^p-1$

2014 Contests, 1

Let $p$ be an odd prime and $r$ an odd natural number.Show that $pr+1$ does not divide $p^p-1$