This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 178

2013 Stanford Mathematics Tournament, 3

Suppose two equally strong tennis players play against each other until one player wins three games in a row. The results of each game are independent, and each player will win with probability $\frac{1}{2}$. What is the expected value of the number of games they will play?

2013 Princeton University Math Competition, 7

The Miami Heat and the San Antonio Spurs are playing a best-of-five series basketball championship, in which the team that first wins three games wins the whole series. Assume that the probability that the Heat wins a given game is $x$ (there are no ties). The expected value for the total number of games played can be written as $f(x)$, with $f$ a polynomial. Find $f(-1)$.

1996 AIME Problems, 12

For each permutation $ a_1, a_2, a_3, \ldots,a_{10}$ of the integers $ 1,2,3,\ldots,10,$ form the sum \[ |a_1 \minus{} a_2| \plus{} |a_3 \minus{} a_4| \plus{} |a_5 \minus{} a_6| \plus{} |a_7 \minus{} a_8| \plus{} |a_9 \minus{} a_{10}|.\] The average value of all such sums can be written in the form $ p/q,$ where $ p$ and $ q$ are relatively prime positive integers. Find $ p \plus{} q.$

2022 JHMT HS, 7

A spider sits on the circumference of a circle and wants to weave a web by making several passes through the circle's interior. On each pass, the spider starts at some location on the circumference, picks a destination uniformly at random from the circumference, and travels to that destination in a straight line, laying down a strand of silk along the line segment they traverse. After the spider does $2022$ of these passes (with each non-initial pass starting where the previous one ended), what is the expected number of points in the circle's interior where two or more non-parallel silk strands intersect?

2018 Harvard-MIT Mathematics Tournament, 9

$20$ players are playing in a Super Mario Smash Bros. Melee tournament. They are ranked $1-20$, and player $n$ will always beat player $m$ if $n<m$. Out of all possible tournaments where each player plays $18$ distinct other players exactly once, one is chosen uniformly at random. Find the expected number of pairs of players that win the same number of games.

2008 ITest, 26

Done working on his sand castle design, Joshua sits down and starts rolling a $12$-sided die he found when cleaning the storage shed. He rolls and rolls and rolls, and after $17$ rolls he finally rolls a $1$. Just $3$ rolls later he rolls the first $2\textit{ after}$ that first roll of $1$. $11$ rolls later, Joshua rolls the first $3\textit{ after}$ the first $2$ that he rolled $\textit{after}$ the first $1$ that he rolled. His first $31$ rolls make the sequence \[4,3,11,3,11,8,5,2,12,9,5,7,11,3,6,10,\textbf{1},8,3,\textbf{2},10,4,2,8,1,9,7,12,11,4,\textbf{3}.\] Joshua wonders how many times he should expect to roll the $12$-sided die so that he can remove all but $12$ of the numbers from the entire sequence of rolls and (without changing the order of the sequence), be left with the sequence \[1,2,3,4,5,6,7,8,9,10,11,12.\] What is the expected value of the number of times Joshua must roll the die before he has such a sequence? (Assume Joshua starts from the beginning - do $\textit{not}$ assume he starts by rolling the specific sequence of $31$ rolls above.)

2005 USAMTS Problems, 2

Anna writes a sequence of integers starting with the number 12. Each subsequent integer she writes is chosen randomly with equal chance from among the positive divisors of the previous integer (including the possibility of the integer itself). She keeps writing integers until she writes the integer 1 for the first time, and then she stops. One such sequence is \[ 12, 6, 6, 3, 3, 3, 1. \] What is the expected value of the number of terms in Anna’s sequence?

2007 Princeton University Math Competition, 10

Bob, having little else to do, rolls a fair $6$-sided die until the sum of his rolls is greater than or equal to $700$. What is the expected number of rolls needed? Any answer within $.0001$ of the correct answer will be accepted.

2013 ELMO Problems, 1

Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$. Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of $A$? [i]Proposed by Ray Li[/i]

2018 CMIMC Individual Finals, 2

John has a standard four-sided die. Each roll, he gains points equal to the value of the roll multiplied by the number of times he has now rolled that number; for example, if his first rolls were $3,3,2,3$, he would have $3+6+2+9=20$ points. Find the expected number of points John will have after rolling the die 25 times.

1958 February Putnam, A3

Real numbers are chosen at random from the interval $[0,1].$ If after choosing the $n$-th number the sum of the numbers so chosen first exceeds $1$, show that the expected value for $n$ is $e$.

1998 Hungary-Israel Binational, 1

A player is playing the following game. In each turn he flips a coin and guesses the outcome. If his guess is correct, he gains $ 1$ point; otherwise he loses all his points. Initially the player has no points, and plays the game until he has $ 2$ points. (a) Find the probability $ p_{n}$ that the game ends after exactly $ n$ flips. (b) What is the expected number of flips needed to finish the game?

2007 Princeton University Math Competition, 4

A cube is formed from $n^3$ ($n \ge 2$) unit cubes, each painted white on five randomly selected sides. This cube is dipped into paint remover and broken into the original unit cubes. What is the expected number of these unit cubes with exactly four sides painted white?

2018 PUMaC Combinatorics A, 4

If $a$ and $b$ are selected uniformly from $\{0,1,\ldots,511\}$ without replacement, the expected number of $1$'s in the binary representation of $a+b$ can be written in simplest from as $\tfrac{m}{n}$. Compute $m+n$.

2009 Princeton University Math Competition, 8

We randomly choose 5 distinct positive integers less than or equal to 90. What is the floor of 10 times the expected value of the fourth largest number?

2009 Harvard-MIT Mathematics Tournament, 5

Two jokers are added to a $52$ card deck and the entire stack of $54$ cards is shuffled randomly. What is the expected number of cards that will be strictly between the two jokers?

2022 IMC, 8

Let $n, k \geq 3$ be integers, and let $S$ be a circle. Let $n$ blue points and $k$ red points be chosen uniformly and independently at random on the circle $S$. Denote by $F$ the intersection of the convex hull of the red points and the convex hull of the blue points. Let $m$ be the number of vertices of the convex polygon $F$ (in particular, $m=0$ when $F$ is empty). Find the expected value of $m$.

2014 NIMO Problems, 6

Bob is making partitions of $10$, but he hates even numbers, so he splits $10$ up in a special way. He starts with $10$, and at each step he takes every even number in the partition and replaces it with a random pair of two smaller positive integers that sum to that even integer. For example, $6$ could be replaced with $1+5$, $2+4$, or $3+3$ all with equal probability. He terminates this process when all the numbers in his list are odd. The expected number of integers in his list at the end can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$. [i]Proposed by Michael Ren[/i]

2012 Kurschak Competition, 3

Consider $n$ events, each of which has probability $\frac12$. We also know that the probability of any two both happening is $\frac14$. Prove the following. (a) The probability that none of these events happen is at most $\frac1{n+1}$. (b) We can reach equality in (a) for infinitely many $n$.

2018 PUMaC Team Round, 1

Let $T=\{a_1,a_2,\dots,a_{1000}\}$, where $a_1<a_2<\dots<a_{1000}$, be a uniformly randomly selected subset of $\{1,2,\dots,2018\}$ with cardinality $1000$. The expected value of $a_7$ can be written in reduced form as $\tfrac{m}{n}$. Find $m+n$.

2005 MOP Homework, 2

A regular $2004$-sided polygon is given, with all of its diagonals drawn. After some sides and diagonals are removed, every vertex has at most five segments coming out of it. Prove that one can color the vertices with two colors such that at least $\frac{3}{5}$ of the remaining segments have ends with different colors.

2013 ELMO Shortlist, 3

Let $a_1,a_2,...,a_9$ be nine real numbers, not necessarily distinct, with average $m$. Let $A$ denote the number of triples $1 \le i < j < k \le 9$ for which $a_i + a_j + a_k \ge 3m$. What is the minimum possible value of $A$? [i]Proposed by Ray Li[/i]

2006 IMO Shortlist, 3

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2020 Putnam, B3

Let $x_0=1$, and let $\delta$ be some constant satisfying $0<\delta<1$. Iteratively, for $n=0,1,2,\dots$, a point $x_{n+1}$ is chosen uniformly form the interval $[0,x_n]$. Let $Z$ be the smallest value of $n$ for which $x_n<\delta$. Find the expected value of $Z$, as a function of $\delta$.

1984 IMO Longlists, 61

A fair coin is tossed repeatedly until there is a run of an odd number of heads followed by a tail. Determine the expected number of tosses.