Found problems: 178
2018 PUMaC Live Round, Estimation 3
Andrew starts with the $2018$-tuple of binary digits $(0,0,\dots,0)$. On each turn, he randomly chooses one index (between $1$ and $2018$) and flips the digit at that index (makes it $1$ if it was a $0$ and vice versa). What is the smallest $k$ such that, after $k$ steps, the expected number of ones in the sequence is greater than $1008?$
You must give your answer as a nonnegative integer. If your answer is $A$ and the correct answer is $C$, then your score will be $\max\{\lfloor18.5-\tfrac{|A-C|^{1.8}}{40}\rfloor,0\}.$
1996 All-Russian Olympiad, 4
In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members.
[i]A. Skopenkov[/i]
2006 Purple Comet Problems, 19
There is a very popular race course where runners frequently go for a daily run. Assume that all runners randomly select a start time, a starting position on the course, and a direction to run. Also assume that all runners make exactly one complete circuit of the race course, all runners run at the same speed, and all runners complete the circuit in one hour. Suppose that one afternoon you go for a run on this race course, and you count $300$ runners which you pass going in the opposite direction, although some of those runners you count twice since you pass them twice. What is the expected value of the number of different runners that you pass not counting duplicates?
2024 China Team Selection Test, 24
Let $N=10^{2024}$. $S$ is a square in the Cartesian plane with side length $N$ and the sides parallel to the coordinate axes. Inside there are $N$ points $P_1$, $P_2$, $\dots$, $P_N$ all of which have different $x$ coordinates, and the absolute value of the slope of any connected line between these points is at most $1$. Prove that there exists a line $l$ such that at least $2024$ of these points is at most distance $1$ away from $l$.
2010 Math Prize For Girls Problems, 19
Let $S$ be the set of 81 points $(x, y)$ such that $x$ and $y$ are integers from $-4$ through $4$. Let $A$, $B$, and $C$ be random points chosen independently from $S$, with each of the 81 points being equally likely. (The points $A$, $B$, and $C$ do not have to be different.) Let $K$ be the area of the (possibly degenerate) triangle $ABC$. What is the expected value (average value) of $K^2$ ?
2013 NIMO Problems, 1
Tim is participating in the following three math contests. On each contest his score is the number of correct answers.
$\bullet$ The Local Area Inspirational Math Exam consists of 15 problems.
$\bullet$ The Further Away Regional Math League has 10 problems.
$\bullet$ The Distance-Optimized Math Open has 50 problems.
For every positive integer $n$, Tim knows the answer to the $n$th problems on each contest (which are pairwise distinct), if they exist; however, these answers have been randomly permuted so that he does not know which answer corresponds to which contest. Unaware of the shuffling, he competes with his modified answers. Compute the expected value of the sum of his scores on all three contests.
[i]Proposed by Evan Chen[/i]
2015 BMT Spring, 1
A fair $6$-sided die is repeatedly rolled until a $1, 4, 5$, or $6$ is rolled. What is the expected value of the product of all the rolls?
2005 MOP Homework, 2
A regular $2004$-sided polygon is given, with all of its diagonals drawn. After some sides and diagonals are removed, every vertex has at most five segments coming out of it. Prove that one can color the vertices with two colors such that at least $\frac{3}{5}$ of the remaining segments have ends with different colors.
2014 Online Math Open Problems, 13
Two ducks, Wat and Q, are taking a math test with $1022$ other ducklings. The test has $30$ questions, and the $n$th question is worth $n$ points. The ducks work independently on the test. Wat gets the $n$th problem correct with probability $\frac{1}{n^2}$ while Q gets the $n$th problem correct with probability $\frac{1}{n+1}$. Unfortunately, the remaining ducklings each answer all $30$ questions incorrectly.
Just before turning in their test, the ducks and ducklings decide to share answers! On any question which Wat and Q have the same answer, the ducklings change their answers to agree with them. After this process, what is the expected value of the sum of all $1024$ scores?
[i]Proposed by Evan Chen[/i]
2018 PUMaC Combinatorics A, 4
If $a$ and $b$ are selected uniformly from $\{0,1,\ldots,511\}$ without replacement, the expected number of $1$'s in the binary representation of $a+b$ can be written in simplest from as $\tfrac{m}{n}$. Compute $m+n$.
2009 Harvard-MIT Mathematics Tournament, 2
Two jokers are added to a $52$ card deck and the entire stack of $54$ cards is shuffled randomly. What is the expected number of cards that will be strictly between the two jokers?
2019 PUMaC Combinatorics B, 5
Marko lives on the origin of the Cartesian plane. Every second, Marko moves $1$ unit up with probability $\tfrac{2}{9}$, $1$ unit right with probability $\tfrac{2}{9}$, $1$ unit up and $1$ unit right with probability $\tfrac{4}{9}$, and he doesn’t move with probability $\tfrac{1}{9}$. After $2019$ seconds, Marko ends up on the point $(A, B)$. What is the expected value of $A\cdot B$?
ICMC 7, 3
Let $N{}$ be a fixed positive integer, $S{}$ be the set $\{1, 2,\ldots , N\}$ and $\mathcal{F}$ be the set of functions $f:S\to S$ such that $f(i)\geqslant i$ for all $i\in S.$ For each $f\in\mathcal{F}$ let $P_f$ be the unique polynomial of degree less than $N{}$ satisfying $P_f(i) = f(i)$ for all $i\in S.$ If $f{}$ is chosen uniformly at random from $\mathcal{F}$ determine the expected value of $P_f'(0)$ where\[P_f'(0)=\frac{\mathrm{d}P_f(x)}{\mathrm{d}x}\bigg\vert_{x=0}.\][i]Proposed by Ishan Nath[/i]
2023 SG Originals, Q5
A clock has an hour, minute, and second hand, all of length $1$. Let $T$ be the triangle formed by the ends of these hands. A time of day is chosen uniformly at random. What is the expected value of the area of $T$?
[i]Proposed by Dylan Toh[/i]
2016 PUMaC Combinatorics B, 6
A knight is placed at the origin of the Cartesian plane. Each turn, the knight moves in an chess $\text{L}$-shape ($2$ units parallel to one axis and $1$ unit parallel to the other) to one of eight possible location, chosen at random. After $2016$ such turns, what is the expected value of the square of the distance of the knight from the origin?
2012 NIMO Problems, 10
A [i]triangulation[/i] of a polygon is a subdivision of the polygon into triangles meeting edge to edge, with the property that the set of triangle vertices coincides with the set of vertices of the polygon. Adam randomly selects a triangulation of a regular $180$-gon. Then, Bob selects one of the $178$ triangles in this triangulation. The expected number of $1^\circ$ angles in this triangle can be expressed as $\frac{a}{b}$, where $a$ and $b$ are relatively prime positive integers. Compute $100a + b$.
[i]Proposed by Lewis Chen[/i]
2021 JHMT HS, 5
The average of all ten-digit base-ten positive integers $\underline{d_9} \ \underline{d_8} \ldots \underline{d_1} \ \underline{d_0}$ that satisfy the property $|d_i - i| \leq 1$ for all $i \in \{0, 1, \ldots, 9\}$ is $\tfrac{p}{q}$, where $p$ and $q$ are relatively prime integers. Compute the remainder when $p + q$ is divided by $10^6.$
2007 District Olympiad, 2
Let $f : \left[ 0, 1 \right] \to \mathbb R$ be a continuous function and $g : \left[ 0, 1 \right] \to \left( 0, \infty \right)$.
Prove that if $f$ is increasing, then
\[\int_{0}^{t}f(x) g(x) \, dx \cdot \int_{0}^{1}g(x) \, dx \leq \int_{0}^{t}g(x) \, dx \cdot \int_{0}^{1}f(x) g(x) \, dx .\]
2013 Stanford Mathematics Tournament, 20
Ben is throwing darts at a circular target with diameter 10. Ben never misses the target when he throws a dart, but he is equally likely to hit any point on the target. Ben gets $\lceil 5-x \rceil$ points for having the dart land $x$ units away from the center of the target. What is the expected number of points that Ben can earn from throwing a single dart? (Note that $\lceil y \rceil$ denotes the smallest integer greater than or equal to $y$.)
2012 AMC 10, 18
Suppose that one of every $500$ people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a $2\%$ false positive rate; in other words, for such people, $98\%$ of the time the test will turn out negative, but $2\%$ of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let $p$ be the probability that a person who is chosen at random from the population and gets a positive test result actually has the disease. Which of the following is closest to $p$?
$ \textbf{(A)}\ \frac{1}{98}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{1}{11}\qquad\textbf{(D)}\ \frac{49}{99}\qquad\textbf{(E)}\ \frac{98}{99}$
2021 JHMT HS, 8
Each of the $9$ cells in a $3\times 3$ grid is colored either blue or white with equal probability. The expected value of the area of the largest square of blue cells contained within the grid is $\tfrac{m}{n},$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2012 NIMO Problems, 4
Let $S = \{(x, y) : x, y \in \{1, 2, 3, \dots, 2012\}\}$. For all points $(a, b)$, let $N(a, b) = \{(a - 1, b), (a + 1, b), (a, b - 1), (a, b + 1)\}$. Kathy constructs a set $T$ by adding $n$ distinct points from $S$ to $T$ at random. If the expected value of $\displaystyle \sum_{(a, b) \in T} | N(a, b) \cap T |$ is 4, then compute $n$.
[i]Proposed by Lewis Chen[/i]
2007 India IMO Training Camp, 2
Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$.
[i]Alternative formulation[/i]:
Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial
\[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}.
\]
Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$
[i]Proposed by Federico Ardila, Colombia[/i]
2018 Harvard-MIT Mathematics Tournament, 9
$20$ players are playing in a Super Mario Smash Bros. Melee tournament. They are ranked $1-20$, and player $n$ will always beat player $m$ if $n<m$. Out of all possible tournaments where each player plays $18$ distinct other players exactly once, one is chosen uniformly at random. Find the expected number of pairs of players that win the same number of games.
2009 Harvard-MIT Mathematics Tournament, 5
Two jokers are added to a $52$ card deck and the entire stack of $54$ cards is shuffled randomly. What is the expected number of cards that will be strictly between the two jokers?