This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 178

2008 Pre-Preparation Course Examination, 5

A permutation $ \pi$ is selected randomly through all $ n$-permutations. a) if \[ C_a(\pi)\equal{}\mbox{the number of cycles of length }a\mbox{ in }\pi\] then prove that $ E(C_a(\pi))\equal{}\frac1a$ b) Prove that if $ \{a_1,a_2,\dots,a_k\}\subset\{1,2,\dots,n\}$ the probability that $ \pi$ does not have any cycle with lengths $ a_1,\dots,a_k$ is at most $ \frac1{\sum_{i\equal{}1}^ka_i}$

1993 Turkey MO (2nd round), 3

$n\in{Z^{+}}$ and $A={1,\ldots ,n}$. $f: N\rightarrow N$ and $\sigma: N\rightarrow N$ are two permutations, if there is one $k\in A$ such that $(f\circ\sigma)(1),\ldots ,(f\circ\sigma)(k)$ is increasing and $(f\circ\sigma)(k),\ldots ,(f\circ\sigma)(n)$ is decreasing sequences we say that $f$ is good for $\sigma$. $S_\sigma$ shows the set of good functions for $\sigma$. a) Prove that, $S_\sigma$ has got $2^{n-1}$ elements for every $\sigma$ permutation. b)$n\geq 4$, prove that there are permutations $\sigma$ and $\tau$ such that, $S_{\sigma}\cap S_{\tau}=\phi$ .

2007 Princeton University Math Competition, 6

Joe has $1729$ randomly oriented and randomly arranged unit cubes, which are initially unpainted. He makes two cubes of sidelengths $9$ and $10$ or of sidelengths $1$ and $12$ (randomly chosen). These cubes are dipped into white paint. Then two more cubes of sidelengths $1$ and $12$ or $9$ and $10$ are formed from the same unit cubes, again randomly oriented and randomly arranged, and dipped into paint. Joe continues this process until every side of every unit cube is painted. After how many times of doing this is the expected number of painted faces closest to half of the total?