This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 HMIC, 5

Let $\mathbb{F}_p$ be the set of integers modulo $p$. Call a function $f : \mathbb{F}_p^2 \to \mathbb{F}_p$ [i]quasiperiodic[/i] if there exist $a,b \in \mathbb{F}_p$, not both zero, so that $f(x + a, y + b) = f(x, y)$ for all $x,y \in \mathbb{F}_p$. Find the number of functions $\mathbb{F}_p^2 \to \mathbb{F}_p$ that can be written as the sum of some number of quasiperiodic functions.