This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2019 CCA Math Bonanza, I8

Tags: factorial
If $a!+\left(a+2\right)!$ divides $\left(a+4\right)!$ for some nonnegative integer $a$, what are all possible values of $a$? [i]2019 CCA Math Bonanza Individual Round #8[/i]

1949-56 Chisinau City MO, 7

Prove that if the product $1\cdot 2\cdot ...\cdot n$ ($n> 3$) is not divisible by $n + 1$, then $n + 1$ is prime.

2012 Centers of Excellency of Suceava, 3

Consider the sequence $ \left( I_n \right)_{n\ge 1} , $ where $ I_n=\int_0^{\pi/4} e^{\sin x\cos x} (\cos x-\sin x)^{2n} (\cos x+\sin x )dx, $ for any natural number $ n. $ [b]a)[/b] Find a relation between any two consecutive terms of $ I_n. $ [b]b)[/b] Calculate $ \lim_{n\to\infty } nI_n. $ [i]c)[/i] Show that $ \sum_{i=1}^{\infty }\frac{1}{(2i-1)!!} =\int_0^{\pi/4} e^{\sin x\cos x} (\cos x+\sin x )dx. $ [i]Cătălin Țigăeru[/i]

2017 CMIMC Number Theory, 10

For each positive integer $n$, define \[g(n) = \gcd\left\{0! n!, 1! (n-1)!, 2 (n-2)!, \ldots, k!(n-k)!, \ldots, n! 0!\right\}.\] Find the sum of all $n \leq 25$ for which $g(n) = g(n+1)$.

2024 Turkey Team Selection Test, 4

Find all positive integer pairs $(a,b)$ such that, $$\frac{10^{a!} - 3^b +1}{2^a}$$ is a perfect square.

2016 AMC 10, 1

What is the value of $\dfrac{11!-10!}{9!}$? $\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

2018 Malaysia National Olympiad, B3

There are $200$ numbers on a blackboard: $ 1! , 2! , 3! , 4! , ... ... , 199! , 200!$. Julia erases one of the numbers. When Julia multiplies the remaining $199$ numbers, the product is a perfect square. Which number was erased?

2003 India Regional Mathematical Olympiad, 7

Tags: factorial , ratio
Consider the set $X$ = $\{ 1,2 \ldots 10 \}$ . Find two disjoint nonempty sunsets $A$ and $B$ of $X$ such that a) $A \cup B = X$; b) $\prod_{x\in A}x$ is divisible by $\prod_{x\in B}x$, where $\prod_{x\in C}x$ is the product of all numbers in $C$; c) $\frac{ \prod\limits_{x\in A}x}{ \prod\limits_{x\in B}x}$ is as small as possible.

2003 SNSB Admission, 3

Let be a prime number $ p, $ the quotient ring $ R=\mathbb{Z}[X,Y]/(pX,pY), $ and a prime ideal $ I\supset pA $ that is not maximal. Show that the ring $ \left\{ r/i|r\in R, i\in I \right\} $ is factorial.

2014-2015 SDML (Middle School), 5

Tags: factorial
In how many consecutive zeros does the decimal expansion of $\frac{26!}{35^3}$ end? $\text{(A) }1\qquad\text{(B) }2\qquad\text{(C) }3\qquad\text{(D) }4\qquad\text{(E) }5$

1946 Moscow Mathematical Olympiad, 114

Prove that for any positive integer $n$ the following identity holds $\frac{(2n)!}{n!}= 2^n \cdot (2n - 1)!!$

1969 IMO Shortlist, 15

$(CZS 4)$ Let $K_1,\cdots , K_n$ be nonnegative integers. Prove that $K_1!K_2!\cdots K_n! \ge \left[\frac{K}{n}\right]!^n$, where $K = K_1 + \cdots + K_n$

2012 AMC 12/AHSME, 11

Alex, Mel, and Chelsea play a game that has $6$ rounds. In each round there is a single winner, and the outcomes of the rounds are independent. For each round the probability that Alex wins is $\frac{1}{2}$, and Mel is twice as likely to win as Chelsea. What is the probability that Alex wins three rounds, Mel wins two rounds, and Chelsea wins one round? $ \textbf{(A)}\ \frac{5}{72}\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{1}{6}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ 1 $

2015 Middle European Mathematical Olympiad, 7

Find all pairs of positive integers $(a,b)$ such that $$a!+b!=a^b + b^a.$$

1992 AIME Problems, 4

In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below. \[\begin{array}{c@{\hspace{8em}} c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{4pt}}c@{\hspace{2pt}} c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{3pt}}c@{\hspace{6pt}} c@{\hspace{6pt}}c@{\hspace{6pt}}c} \vspace{4pt} \text{Row 0: } & & & & & & & 1 & & & & & & \\\vspace{4pt} \text{Row 1: } & & & & & & 1 & & 1 & & & & & \\\vspace{4pt} \text{Row 2: } & & & & & 1 & & 2 & & 1 & & & & \\\vspace{4pt} \text{Row 3: } & & & & 1 & & 3 & & 3 & & 1 & & & \\\vspace{4pt} \text{Row 4: } & & & 1 & & 4 & & 6 & & 4 & & 1 & & \\\vspace{4pt} \text{Row 5: } & & 1 & & 5 & &10& &10 & & 5 & & 1 & \\\vspace{4pt} \text{Row 6: } & 1 & & 6 & &15& &20& &15 & & 6 & & 1 \end{array}\] In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?

2012-2013 SDML (Middle School), 3

Tags: factorial
What is the smallest integer $n$ for which $\frac{10!}{n}$ is a perfect square?

2012 Math Prize for Girls Olympiad, 4

Let $f$ be a function from the set of rational numbers to the set of real numbers. Suppose that for all rational numbers $r$ and $s$, the expression $f(r + s) - f(r) - f(s)$ is an integer. Prove that there is a positive integer $q$ and an integer $p$ such that \[ \Bigl\lvert f\Bigl(\frac{1}{q}\Bigr) - p \Bigr\rvert \le \frac{1}{2012} \, . \]

2013 Princeton University Math Competition, 4

Tags: factorial
Find the sum of all positive integers $m$ such that $2^m$ can be expressed as a sum of four factorials (of positive integers). Note: The factorials do not have to be distinct. For example, $2^4=16$ counts, because it equals $3!+3!+2!+2!$.

2007-2008 SDML (Middle School), 6

Tags: factorial
Find the smallest positive integer $k$ such that $k!$ ends in at least $43$ zeroes.

2024 Israel TST, P1

For each positive integer $n$ let $a_n$ be the largest positive integer satisfying \[(a_n)!\left| \prod_{k=1}^n \left\lfloor \frac{n}{k}\right\rfloor\right.\] Show that there are infinitely many positive integers $m$ for which $a_{m+1}<a_m$.

2015 Purple Comet Problems, 14

Tags: factorial
Find the greatest positive integer $n$ so that $3^n$ divides $70! + 71! + 72!.$

2023 Serbia Team Selection Test, P5

For positive integers $a$ and $b$, define \[a!_b=\prod_{1\le i\le a\atop i \equiv a \mod b} i\] Let $p$ be a prime and $n>3$ a positive integer. Show that there exist at least 2 different positive integers $t$ such that $1<t<p^n$ and $t!_p\equiv 1\pmod {p^n}$.

2022 Junior Macedonian Mathematical Olympiad, P1

Determine all positive integers $a$, $b$ and $c$ which satisfy the equation $$a^2+b^2+1=c!.$$ [i]Proposed by Nikola Velov[/i]

2008 iTest Tournament of Champions, 1

Tags: factorial
Find the remainder when $712!$ is divided by $719$.

2010 Junior Balkan Team Selection Tests - Romania, 3

Determine the integers $n, n \ge 2$, with the property that the numbers $1! , 2 ! , 3 ! , ..., (n- 1)!$ give different remainders when dividing by $n $.