Found problems: 2
2018 AMC 12/AHSME, 17
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is 2 units. What fraction of the field is planted?
[asy]
draw((0,0)--(4,0)--(0,3)--(0,0));
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
label("$4$", (2,0), N);
label("$3$", (0,1.5), E);
label("$2$", (.8,1), E);
label("$S$", (0,0), NE);
draw((0.3,0.3)--(1.4,1.9), dashed);
[/asy]
$\textbf{(A) } \frac{25}{27} \qquad \textbf{(B) } \frac{26}{27} \qquad \textbf{(C) } \frac{73}{75} \qquad \textbf{(D) } \frac{145}{147} \qquad \textbf{(E) } \frac{74}{75} $
2018 AMC 10, 23
Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is 2 units. What fraction of the field is planted?
[asy]
draw((0,0)--(4,0)--(0,3)--(0,0));
draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0));
fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray);
label("$4$", (2,0), N);
label("$3$", (0,1.5), E);
label("$2$", (.8,1), E);
label("$S$", (0,0), NE);
draw((0.3,0.3)--(1.4,1.9), dashed);
[/asy]
$\textbf{(A) } \frac{25}{27} \qquad \textbf{(B) } \frac{26}{27} \qquad \textbf{(C) } \frac{73}{75} \qquad \textbf{(D) } \frac{145}{147} \qquad \textbf{(E) } \frac{74}{75} $