This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 59

2019 Dutch Mathematical Olympiad, 4

The sequence of Fibonacci numbers $F_0, F_1, F_2, . . .$ is defined by $F_0 = F_1 = 1 $ and $F_{n+2} = F_n+F_{n+1}$ for all $n > 0$. For example, we have $F_2 = F_0 + F_1 = 2, F_3 = F_1 + F_2 = 3, F_4 = F_2 + F_3 = 5$, and $F_5 = F_3 + F_4 = 8$. The sequence $a_0, a_1, a_2, ...$ is defined by $a_n =\frac{1}{F_nF_{n+2}}$ for all $n \ge 0$. Prove that for all $m \ge 0$ we have: $a_0 + a_1 + a_2 + ... + a_m < 1$.

1983 IMO Shortlist, 19

Let $(F_n)_{n\geq 1} $ be the Fibonacci sequence $F_1 = F_2 = 1, F_{n+2} = F_{n+1} + F_n (n \geq 1),$ and $P(x)$ the polynomial of degree $990$ satisfying \[ P(k) = F_k, \qquad \text{ for } k = 992, . . . , 1982.\] Prove that $P(1983) = F_{1983} - 1.$

2017 Baltic Way, 3

Positive integers $x_1,...,x_m$ (not necessarily distinct) are written on a blackboard. It is known that each of the numbers $F_1,...,F_{2018}$ can be represented as a sum of one or more of the numbers on the blackboard. What is the smallest possible value of $m$? (Here $F_1,...,F_{2018}$ are the first $2018$ Fibonacci numbers: $F_1=F_2=1, F_{k+1}=F_k+F_{k-1}$ for $k>1$.)

ICMC 7, 1

Let $F_n{}$ denote the $n{}$-th Fibonacci number. Prove that $3^{2023}$ divides \[3^2\cdot F_4+3^3\cdot F_6+3^4\cdot F_8+\dots+3^{2023}F_{4046}.\][i]Proposed by Dylan Toh[/i]

2002 Federal Math Competition of S&M, Problem 2

The (Fibonacci) sequence $f_n$ is defined by $f_1=f_2=1$ and $f_{n+2}=f_{n+1}+f_n$ for $n\ge1$. Prove that the area of the triangle with the sides $\sqrt{f_{2n+1}},\sqrt{f_{2n+2}},$ and $\sqrt{f_{2n+3}}$ is equal to $\frac12$.

2020 Jozsef Wildt International Math Competition, W14

Let $\{F_n\}_{n\ge1}$ be the Fibonacci sequence defined by $F_1=F_2=1$ and for all $n\ge3$, $F_n=F_{n-1}+F_{n-2}$. Prove that among the first $10000000000000002$ terms of the sequence there is one term that ends up with $8$ zeroes. [i]Proposed by José Luis Díaz-Barrero[/i]

2023 Olimphíada, 1

The Fibonacci sequence is defined by $F_1 = F_2 = 1$ and $F_{n+2} = F_{n+1}+F_n$ for every integer $n$. Let $k$ be a fixed integer. A sequence $(a_n)$ of integers is said to be $\textit{phirme}$ if $a_n + a_{n+1} = F_{n+k}$ for all $n \geq 1$. Find all $\textit{phirme}$ sequences in terms of $n$ and $k$.

1946 Moscow Mathematical Olympiad, 121

Given the Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, ... ,$ ascertain whether among its first $(10^8+1)$ terms there is a number that ends with four zeros.

1990 Greece Junior Math Olympiad, 1

Tags: algebra , fibonacci
Considee thr positive integers $a_1,a_2,...,a_{10}$ such that from the third and on, each it the sum of it's two previous terms (i.e. $a_3=a_2+a_1$, $a_4=a_3+a_2$, ...). If $a_5=7$, find $a_{10}$.