This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

2020 Jozsef Wildt International Math Competition, W17

Let $(K,+,\cdot)$ be a field with the property $-x=x^{-1},\forall x\in K,x\ne0$. Prove that: $$(K,+,\cdot)\simeq(\mathbb Z_2,+,\cdot)$$ [i]Proposed by Ovidiu Pop[/i]

2006 Mathematics for Its Sake, 1

Determine the number of polynomials of degree $ 3 $ that are irreducible over the field of integers modulo a prime.

1986 Traian Lălescu, 2.2

Prove that $ \left( \left.\left\{\begin{pmatrix} a & b & c \\ 3c & a & b \\ 3b & 3c & a\end{pmatrix} \right| a,b,c\in\mathbb{Q}\right\} ,+,\cdot\right) $ is a field.

2017 Miklós Schweitzer, 2

Prove that a field $K$ can be ordered if and only if every $A\in M_n(K)$ symmetric matrix can be diagonalized over the algebraic closure of $K$. (In other words, for all $n\in\mathbb{N}$ and all $A\in M_n(K)$, there exists an $S\in GL_n(\overline{K})$ for which $S^{-1}AS$ is diagonal.)

2011 Laurențiu Duican, 4

Consider a finite field $ K. $ [b]a)[/b] Prove that there is an element $ k $ in $ K $ having the property that the polynom $ X^3+k $ is irreducible in $ K[X], $ if $ \text{ord} (K)\equiv 1\pmod {12}. $ [b]b)[/b] Is [b]a)[/b] still true if, intead, $ \text{ord} (K) \equiv -1\pmod{12} ? $ [i]Dorel Miheț[/i]

2023 Romania National Olympiad, 2

Let $p$ be a prime number, $n$ a natural number which is not divisible by $p$, and $\mathbb{K}$ is a finite field, with $char(K) = p, |K| = p^n, 1_{\mathbb{K}}$ unity element and $\widehat{0} = 0_{\mathbb{K}}.$ For every $m \in \mathbb{N}^{*}$ we note $ \widehat{m} = \underbrace{1_{\mathbb{K}} + 1_{\mathbb{K}} + \ldots + 1_{\mathbb{K}}}_{m \text{ times}} $ and define the polynomial \[ f_m = \sum_{k = 0}^{m} (-1)^{m - k} \widehat{\binom{m}{k}} X^{p^k} \in \mathbb{K}[X]. \] a) Show that roots of $f_1$ are $ \left\{ \widehat{k} | k \in \{0,1,2, \ldots , p - 1 \} \right\}$. b) Let $m \in \mathbb{N}^{*}.$ Determine the set of roots from $\mathbb{K}$ of polynomial $f_{m}.$