This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2005 Gheorghe Vranceanu, 2

Three natural numbers $ a,b,c $ with $ \gcd (a,b) =1 $ define in the Diophantine plane a line $ d: ax+by-c=0. $ Prove that: [b]a)[/b] the distance between any two points from $ d $ is at least $ \sqrt{a^2+b^2} . $ [b]b)[/b] the restriction of $ d $ to the first quadrant of the Diophantine plane is a finite line having at most $ 1+\frac{c}{ab} $ elements.