This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2021 EGMO, 2

Find all functions $f:\mathbb{Q}\to\mathbb{Q}$ such that the equation \[f(xf(x)+y) = f(y) + x^2\]holds for all rational numbers $x$ and $y$. Here, $\mathbb{Q}$ denotes the set of rational numbers.

Russian TST 2020, P2

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

2018-IMOC, A1

Find all functions $f:\mathbb Q\to\mathbb Q$ such that for all $x,y,z,w\in\mathbb Q$, $$f(f(xyzw)+x+y)+f(z)+f(w)=f(f(xyzw)+z+w)+f(x)+f(y).$$

2024 IFYM, Sozopol, 1

Find all functions \( f: \mathbb{R}^{+} \to \mathbb{R}^{+} \) such that: \[ f(x^2 + y) = xf(x) + \frac{f(y^2)}{y} \] for any positive real numbers \( x \) and \( y \).

2004 Estonia Team Selection Test, 1

Let $k > 1$ be a fixed natural number. Find all polynomials $P(x)$ satisfying the condition $P(x^k) = (P(x))^k$ for all real numbers $x$.

1994 IMO Shortlist, 3

Let $ S$ be the set of all real numbers strictly greater than −1. Find all functions $ f: S \to S$ satisfying the two conditions: (a) $ f(x \plus{} f(y) \plus{} xf(y)) \equal{} y \plus{} f(x) \plus{} yf(x)$ for all $ x, y$ in $ S$; (b) $ \frac {f(x)}{x}$ is strictly increasing on each of the two intervals $ \minus{} 1 < x < 0$ and $ 0 < x$.

2009 Ukraine Team Selection Test, 4

Let $n$ be some positive integer. Find all functions $f:{{R}^{+}}\to R$ (i.e., functions defined by the set of all positive real numbers with real values) for which equality holds $f\left( {{x}^{n+1}}+ {{y}^{n+1}} \right)={{x}^{n}}f\left( x \right)+{{y}^{n}}f\left( y \right)$ for any positive real numbers $x, y$

2013 NZMOC Camp Selection Problems, 5

Consider functions $f$ from the whole numbers (non-negative integers) to the whole numbers that have the following properties: $\bullet$ For all $x$ and $y$, $f(xy) = f(x)f(y)$, $\bullet$ $f(30) = 1$, and $\bullet$ for any $n$ whose last digit is $7$, $f(n) = 1$. Obviously, the function whose value at $n$ is $ 1$ for all $n$ is one such function. Are there any others? If not, why not, and if so, what are they?

PEN K Problems, 3

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(n+1) > f(f(n)).\]

2022-IMOC, A5

Find all functions $f:\mathbb R\to \mathbb R$ such that \begin{align*} \left (x \left (f(x)-\dfrac{f(y)+f(z)}{2} \right) +y \left (f(y)-\dfrac{f(z)+f(x)}{2} \right ) +z\left (f(z)- \dfrac{f(x)+f(y)}{2} \right) \right )f(x+y+z)= \\ f(x^3)+f(y^3)+f(z^3)-3f(xyz) \end{align*} for all $x,y,z\in \mathbb R.$

2019 Greece Team Selection Test, 4

Find all functions $f:(0,\infty)\mapsto\mathbb{R}$ such that $\displaystyle{(y^2+1)f(x)-yf(xy)=yf\left(\frac{x}{y}\right),}$ for every $x,y>0$.

2017 Latvia Baltic Way TST, 3

Find all functions $f (x) : Z \to Z$ defined on integers, take integer values, and for all $x,y \in Z$ satisfy $$f(x+y)+f(xy)=f(x)f(y)+1$$

VMEO II 2005, 11

Given $P$ a real polynomial with degree greater than $ 1$. Find all pairs $(f,Q)$ with function $f : R \to R$ and the real polynomial $Q$ satisfying the following two conditions: i) for all $x, y \in R$, we have $f(P(x) + f(y)) = y + Q(f(x))$. ii) there exists $x_0 \in R$ such that $f(P(x_0)) = Q(f(x_0))$.

2017 Abels Math Contest (Norwegian MO) Final, 1a

Find all functions $f : R \to R$ which satisfy $f(x)f(y) = f(xy) + xy$ for all $x, y \in R$.

2016 Taiwan TST Round 3, 2

Determine all functions $f:\mathbb{R}^+\rightarrow \mathbb{R}^+$ satisfying $f(x+y+f(y))=4030x-f(x)+f(2016y), \forall x,y \in \mathbb{R}^+$.

2018 Costa Rica - Final Round, F2

Consider $f (n, m)$ the number of finite sequences of $ 1$'s and $0$'s such that each sequence that starts at $0$, has exactly n $0$'s and $m$ $ 1$'s, and there are not three consecutive $0$'s or three $ 1$'s. Show that if $m, n> 1$, then $$f (n, m) = f (n-1, m-1) + f (n-1, m-2) + f (n-2, m-1) + f (n-2, m-2)$$

PEN K Problems, 16

Find all functions $f: \mathbb{Z}\to \mathbb{Z}$ such that for all $m,n\in \mathbb{Z}$: \[f(m+f(n)) = f(m)+n.\]

2015 Taiwan TST Round 2, 2

Determine all functions $f: \mathbb{Z}\to\mathbb{Z}$ satisfying \[f\big(f(m)+n\big)+f(m)=f(n)+f(3m)+2014\] for all integers $m$ and $n$. [i]Proposed by Netherlands[/i]

2022 Thailand Online MO, 3

Let $\mathbb{N}$ be the set of positive integers. Across all function $f:\mathbb{N}\to\mathbb{N}$ such that $$mn+1\text{ divides } f(m)f(n)+1$$ for all positive integers $m$ and $n$, determine all possible values of $f(101).$

2015 Belarus Team Selection Test, 1

Do there exist numbers $a,b \in R$ and surjective function $f: R \to R$ such that $f(f(x)) = bx f(x) +a$ for all real $x$? I.Voronovich

2017 QEDMO 15th, 11

Let $G$ be a finite group and $f: G \to G$ a map, such that $f (xy) = f (x) f (y)$ for all $x, y \in G$ and $f (x) = x^{-1}$ for more than $\frac34$ of all $x \in G$ is fulfilled. Show that $f (x) =x^{-1}$ even holds for all $x \in G$ holds.

2018 Taiwan TST Round 3, 5

Find all functions $ f: \mathbb{N} \to \mathbb{N} $ such that $$ f\left(x+yf\left(x\right)\right) = x+f\left(y\right)f\left(x\right) $$ holds for all $ x,y \in \mathbb{N} $

2020 Grand Duchy of Lithuania, 1

Find all functions $f: R \to R$, such that equality $f (xf (y) - yf (x)) = f (xy) - xy$ holds for all $x, y \in R$.

2025 Macedonian TST, Problem 4

Find all functions $f:\mathbb{N}_0\to\mathbb{N}$ such that [b]1)[/b] \(f(a)\) divides \(a\) for every \(a\in\mathbb{N}_0\), and [b]2)[/b] for all \(a,b,k\in\mathbb{N}_0\) we have \[ f\bigl(f(a)+kb\bigr)\;=\;f\bigl(a + k\,f(b)\bigr). \]

1979 IMO Shortlist, 3

Find all polynomials $f(x)$ with real coefficients for which \[f(x)f(2x^2) = f(2x^3 + x).\]