This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2017 Pan-African Shortlist, A4

Find all functions $f : R\rightarrow R$ such that $f ( f (x)+y) = f (x^2 -y)+4 f (x)y$ for all $x,y \in R$ .

2017 Iran Team Selection Test, 3

Find all functions $f: \mathbb {R}^+ \times \mathbb {R}^+ \to \mathbb {R}^+$ that satisfy the following conditions for all positive real numbers $x,y,z:$ $$f\left ( f(x,y),z \right )=x^2y^2f(x,z)$$ $$f\left ( x,1+f(x,y) \right ) \ge x^2 + xyf(x,x)$$ [i]Proposed by Mojtaba Zare, Ali Daei Nabi[/i]

The Golden Digits 2024, P1

Find all functions $f:\mathbb{Z}_{>0}\rightarrow\mathbb{Z}_{>0}$ with the following properties: 1) For every natural number $n\geq 3$, $\gcd(f(n),n)\neq 1$. 2) For every natural number $n\geq 3$, there exists $i_n\in\mathbb{Z}_{>0}$, $1\leq i_n\leq n-1$, such that $f(n)=f(i_n)+f(n-i_n)$. [i]Proposed by Pavel Ciurea[/i]

2023 Indonesia TST, A

Find all function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfied \[f(x+y) + f(x)f(y) = f(xy) + 1 \] $\forall x, y \in \mathbb{R}$

2021 Balkan MO Shortlist, A6

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $$f(xy) = f(x)f(y) + f(f(x + y))$$ holds for all $x, y \in \mathbb{R}$.

2018 Bundeswettbewerb Mathematik, 2

Consider all functions $f:\mathbb{R} \to \mathbb{R}$ satisfying $f(1-f(x))=x$ for all $x \in \mathbb{R}$. a) By giving a concrete example, show that such a function exists. b) For each such function define the sum \[S_f=f(-2017)+f(-2016)+\dots+f(-1)+f(0)+f(1)+\dots+f(2017)+f(2018).\] Determine all possible values of $S_f$.

2021 JHMT HS, 4

There is a unique differentiable function $f$ from $\mathbb{R}$ to $\mathbb{R}$ satisfying $f(x) + (f(x))^3 = x + x^7$ for all real $x.$ The derivative of $f(x)$ at $x = 2$ can be expressed as a common fraction $a/b.$ Compute $a + b.$

2014 Brazil Team Selection Test, 1

Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that \[ m^2 + f(n) \mid mf(m) +n \] for all positive integers $m$ and $n$.

2024 India IMOTC, 9

Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all real numbers $a, b, c$, we have \[ f(a+b+c)f(ab+bc+ca) - f(a)f(b)f(c) = f(a+b)f(b+c)f(c+a). \] [i]Proposed by Mainak Ghosh and Rijul Saini[/i]

2004 Swedish Mathematical Competition, 3

A function $f$ satisfies $f(x)+x f(1-x) = x^2$ for all real $x$. Determine $f$ .

2020 Thailand TST, 5

Find all functions $f:\mathbb Z_{>0}\to \mathbb Z_{>0}$ such that $a+f(b)$ divides $a^2+bf(a)$ for all positive integers $a$ and $b$ with $a+b>2019$.

1989 IMO Shortlist, 10

Let $ g: \mathbb{C} \rightarrow \mathbb{C}$, $ \omega \in \mathbb{C}$, $ a \in \mathbb{C}$, $ \omega^3 \equal{} 1$, and $ \omega \ne 1$. Show that there is one and only one function $ f: \mathbb{C} \rightarrow \mathbb{C}$ such that \[ f(z) \plus{} f(\omega z \plus{} a) \equal{} g(z),z\in \mathbb{C} \]

2004 Germany Team Selection Test, 2

Find all functions $f: \Bbb{R}_{0}^{+}\rightarrow \Bbb{R}_{0}^{+}$ with the following properties: (a) We have $f\left( xf\left( y\right) \right) \cdot f\left( y\right) =f\left( x+y\right)$ for all $x$ and $y$. (b) We have $f\left(2\right) = 0$. (c) For every $x$ with $0 < x < 2$, the value $f\left(x\right)$ doesn't equal $0$. [b]NOTE.[/b] We denote by $\Bbb{R}_{0}^{+}$ the set of all non-negative real numbers.

2010 IMO Shortlist, 5

Denote by $\mathbb{Q}^+$ the set of all positive rational numbers. Determine all functions $f : \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x, y \in \mathbb{Q}^+:$ \[f\left( f(x)^2y \right) = x^3 f(xy).\] [i]Proposed by Thomas Huber, Switzerland[/i]

1998 Slovenia National Olympiad, Problem 2

Find all polynomials $p$ with real coefficients such that for all real $x$ $$(x-8)p(2x)=8(x-1)p(x).$$

2021 Israel TST, 2

Find all unbounded functions $f:\mathbb Z \rightarrow \mathbb Z$ , such that $f(f(x)-y)|x-f(y)$ holds for any integers $x,y$.

2021 Austrian MO National Competition, 4

Let $a$ be a real number. Determine all functions $f: R \to R$ with $f (f (x) + y) = f (x^2 - y) + af (x) y$ for all $x, y \in R$. (Walther Janous)

1972 IMO, 2

$f$ and $g$ are real-valued functions defined on the real line. For all $x$ and $y, f(x+y)+f(x-y)=2f(x)g(y)$. $f$ is not identically zero and $|f(x)|\le1$ for all $x$. Prove that $|g(x)|\le1$ for all $x$.

2019 Korea Junior Math Olympiad., 6

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ which satisfies the followings. (Note that $\mathbb{R}$ stands for the set of all real numbers) (1) For each real numbers $x$, $y$, the equality $f(x+f(x)+xy) = 2f(x)+xf(y)$ holds. (2) For every real number $z$, there exists $x$ such that $f(x) = z$.

2021 Bangladeshi National Mathematical Olympiad, 5

$g(x):\mathbb{Z}\rightarrow\mathbb{Z}$ is a function that satisfies $$g(x)+g(y)=g(x+y)-xy.$$ If $g(23)=0$, what is the sum of all possible values of $g(35)$?

2025 NEPALTST, 3

Find all functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that \[f(f(x)) + xf(xy) = x + f(y)\] for all positive real numbers $x$ and $y$. [i](Andrew Brahms, USA)[/i]

2018 NZMOC Camp Selection Problems, 10

Find all functions $f : R \to R$ such that $$f(x)f(y) = f(xy + 1) + f(x - y) - 2$$ for all $x, y \in R$.

2018 SIMO, Q3

Suppose $f:\mathbb{N}\rightarrow \mathbb{N}$ is a function such that $$f^n(n) = 2n$$ for all $n\in \mathbb{N}$. Must $f(n) = n+1$ for all $n$?

2003 Switzerland Team Selection Test, 10

Find all strictly monotonous functions $f : N \to N$ that satisfy $f(f(n)) = 3n$ for all $n \in N$.

2015 Estonia Team Selection Test, 5

Find all functions $f$ from reals to reals which satisfy $f (f(x) + f(y)) = f(x^2) + 2x^2 f(y) + (f(y))^2$ for all real numbers $x$ and $y$.