This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

1982 IMO Shortlist, 1

The function $f(n)$ is defined on the positive integers and takes non-negative integer values. $f(2)=0,f(3)>0,f(9999)=3333$ and for all $m,n:$ \[ f(m+n)-f(m)-f(n)=0 \text{ or } 1. \] Determine $f(1982)$.

2021 Albanians Cup in Mathematics, 4

Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all real numbers $x$ and $y$ satisfies, $$2+f(x)f(y)\leq xy+2f(x+y+1).$$

2018 Pan-African Shortlist, A5

Let $g : \mathbb{N} \to \mathbb{N}$ be a function satisfying: [list] [*] $g(xy) = g(x)g(y)$ for all $x, y \in \mathbb{N}$, [*] $g(g(x)) = x$ for all $x \in \mathbb{N}$, and [*] $g(x) \neq x$ for $2 \leq x \leq 2018$. [/list] Find the minimum possible value of $g(2)$.

2022 Philippine MO, 1

Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that \[ f(a-b)f(c-d) + f(a-d)f(b-c) \leq (a-c)f(b-d) \] for all real numbers $a, b, c,$ and $d$.

2007 Estonia Team Selection Test, 5

Find all continuous functions $f: R \to R$ such that for all reals $x$ and $y$, $f(x+f(y)) = y+f(x+1)$.

2023 USAMO, 2

Let $\mathbb{R}^+$ be the set of positive real numbers. Find all functions $f \colon \mathbb{R}^+ \to \mathbb{R}^+$ such that, for all $x,y \in \mathbb{R}^+$, $$f(xy+f(x))=xf(y)+2.$$

2016 Thailand TSTST, 1

Find all functions $f:\mathbb{Q}\to\mathbb{Q}$ such that $$f(xy)+f(x+y)=f(x)f(y)+f(x)+f(y)$$ for all $x,y\in\mathbb{Q}$.

2019 ELMO Shortlist, A5

Carl chooses a [i]functional expression[/i]* $E$ which is a finite nonempty string formed from a set $x_1, x_2, \dots$ of variables and applications of a function $f$, together with addition, subtraction, multiplication (but not division), and fixed real constants. He then considers the equation $E = 0$, and lets $S$ denote the set of functions $f \colon \mathbb R \to \mathbb R$ such that the equation holds for any choices of real numbers $x_1, x_2, \dots$. (For example, if Carl chooses the functional equation $$ f(2f(x_1)+x_2) - 2f(x_1)-x_2 = 0, $$ then $S$ consists of one function, the identity function. (a) Let $X$ denote the set of functions with domain $\mathbb R$ and image exactly $\mathbb Z$. Show that Carl can choose his functional equation such that $S$ is nonempty but $S \subseteq X$. (b) Can Carl choose his functional equation such that $|S|=1$ and $S \subseteq X$? *These can be defined formally in the following way: the set of functional expressions is the minimal one (by inclusion) such that (i) any fixed real constant is a functional expression, (ii) for any positive integer $i$, the variable $x_i$ is a functional expression, and (iii) if $V$ and $W$ are functional expressions, then so are $f(V)$, $V+W$, $V-W$, and $V \cdot W$. [i]Proposed by Carl Schildkraut[/i]

1992 Rioplatense Mathematical Olympiad, Level 3, 1

Let $f:Z \to N -\{0\}$ such that: $f(x + y)f(x-y) = (f(x)f(y))^2$ and $f(1)\ne 1$. Provethat $\log_{f(1)}f(z)$ is a perfect square for every integer $z$.

2019 Romania Team Selection Test, 3

Determine all functions $f$ from the set of non-negative integers to itself such that $f(a + b) = f(a) + f(b) + f(c) + f(d)$, whenever $a, b, c, d$, are non-negative integers satisfying $2ab = c^2 + d^2$.

1998 Slovenia Team Selection Test, 1

Find all functions $f : R \to R$ that satisfy $f((x-y)^2)= f(x)^2 -2x f(y)+y^2$ for all $x,y \in R$

1996 IMO, 3

Let $ \mathbb{N}_0$ denote the set of nonnegative integers. Find all functions $ f$ from $ \mathbb{N}_0$ to itself such that \[ f(m \plus{} f(n)) \equal{} f(f(m)) \plus{} f(n)\qquad \text{for all} \; m, n \in \mathbb{N}_0. \]

2017 Puerto Rico Team Selection Test, 6

Find all functions $f: R \to R$ such that $f (xy) \le yf (x) + f (y)$, for all $x, y\in R$.

1978 IMO Shortlist, 9

Let $0<f(1)<f(2)<f(3)<\ldots$ a sequence with all its terms positive$.$ The $n-th$ positive integer which doesn't belong to the sequence is $f(f(n))+1.$ Find $f(240).$

2020 Thailand Mathematical Olympiad, 7

Determine all functions $f:\mathbb{R}\to\mathbb{Z}$ satisfying the inequality $(f(x))^2+(f(y))^2 \leq 2f(xy)$ for all reals $x,y$.

2019 Abels Math Contest (Norwegian MO) Final, 3b

Find all real functions $f$ defined on the real numbers except zero, satisfying $f(2019) = 1$ and $f(x)f(y)+ f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right) =2f(xy)$ for all $x,y \ne 0$

2017-IMOC, N5

Find all functions $f:\mathbb N\to\mathbb N$ such that $$f(x)+f(y)\mid x^2-y^2$$holds for all $x,y\in\mathbb N$.

2010 Benelux, 2

Find all polynomials $p(x)$ with real coeffcients such that \[p(a + b - 2c) + p(b + c - 2a) + p(c + a - 2b) = 3p(a - b) + 3p(b - c) + 3p(c - a)\] for all $a, b, c\in\mathbb{R}$. [i](2nd Benelux Mathematical Olympiad 2010, Problem 2)[/i]

1998 Poland - Second Round, 1

Let $A_n = \{1,2,...,n\}$. Prove or disprove: For all integers $n \ge 2$ there exist functions $f,g : A_n \to A_n$ which satisfy $f(f(k)) = g(g(k)) = k$ for $1 \le k \le n$, and $g(f(k)) = k +1$ for $1 \le k \le n -1$.

2019 Taiwan TST Round 1, 1

Find all functions $ f: \mathbb{R} \to \mathbb{R} $ such that $$ f\left(xf\left(y\right)-f\left(x\right)-y\right) = yf\left(x\right)-f\left(y\right)-x $$ holds for all $ x,y \in \mathbb{R} $

2014 Abels Math Contest (Norwegian MO) Final, 1b

Find all functions $f : R-\{0\} \to R$ which satisfy $(1 + y)f(x) - (1 + x)f(y) = yf(x/y) - xf(y/x)$ for all real $x, y \ne 0$, and which take the values $f(1) = 32$ and $f(-1) = -4$.

2019 Greece Team Selection Test, 4

Find all functions $f:(0,\infty)\mapsto\mathbb{R}$ such that $\displaystyle{(y^2+1)f(x)-yf(xy)=yf\left(\frac{x}{y}\right),}$ for every $x,y>0$.

2022-IMOC, A3

Find all functions $f:\mathbb R\to \mathbb R$ such that $$xy(f(x+y)-f(x)-f(y))=2f(xy)$$ for all $x,y\in \mathbb R.$ [i]Proposed by USJL[/i]

1994 Austrian-Polish Competition, 1

A function $f: R \to R$ satisfies the conditions: $f (x + 19) \le f (x) + 19$ and $f (x + 94) \ge f (x) + 94$ for all $x \in R$. Prove that $f (x + 1) = f (x) + 1$ for all $x \in R$.

2012 Dutch IMO TST, 5

Find all functions $f : R \to R$ satisfying $f(x + xy + f(y))=(f(x) + \frac12)(f(y) + \frac12 )$ for all $x, y \in R$.