This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2007 Flanders Math Olympiad, 4

If $f,g: \mathbb{R} \to \mathbb{R}$ are functions that satisfy $f(x+g(y)) = 2x+y $ $\forall x,y \in \mathbb{R}$, then determine $g(x+f(y))$.

2010 Albania Team Selection Test, 2

Find all the continuous functions $f : \mathbb{R} \mapsto\mathbb{R}$ such that $\forall x,y \in \mathbb{R}$, $(1+f(x)f(y))f(x+y)=f(x)+f(y)$.

2020 Bulgaria Team Selection Test, 5

Given is a function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $|f(x+y)-f(x)-f(y)|\leq 1$. Prove the existence of an additive function $g:\mathbb{R}\rightarrow \mathbb{R}$ (that is $g(x+y)=g(x)+g(y)$) such that $|f(x)-g(x)|\leq 1$ for any $x \in \mathbb{R}$

2019 USA TSTST, 7

Let $f: \mathbb Z\to \{1, 2, \dots, 10^{100}\}$ be a function satisfying $$\gcd(f(x), f(y)) = \gcd(f(x), x-y)$$ for all integers $x$ and $y$. Show that there exist positive integers $m$ and $n$ such that $f(x) = \gcd(m+x, n)$ for all integers $x$. [i]Ankan Bhattacharya[/i]

2017 Thailand TSTST, 4

Find all function $f:\mathbb{N}^*\rightarrow \mathbb{N}^*$ that satisfy: $(f(1))^3+(f(2))^3+...+(f(n))^3=(f(1)+f(2)+...+f(n))^2$

1979 IMO Shortlist, 8

For all rational $x$ satisfying $0 \leq x < 1$, the functions $f$ is defined by \[f(x)=\begin{cases}\frac{f(2x)}{4},&\mbox{for }0 \leq x < \frac 12,\\ \frac 34+ \frac{f(2x - 1)}{4}, & \mbox{for } \frac 12 \leq x < 1.\end{cases}\] Given that $x = 0.b_1b_2b_3 \cdots $ is the binary representation of $x$, find, with proof, $f(x)$.

2022 China Team Selection Test, 3

Find all functions $f: \mathbb R \to \mathbb R$ such that for any $x,y \in \mathbb R$, the multiset $\{(f(xf(y)+1),f(yf(x)-1)\}$ is identical to the multiset $\{xf(f(y))+1,yf(f(x))-1\}$. [i]Note:[/i] The multiset $\{a,b\}$ is identical to the multiset $\{c,d\}$ if and only if $a=c,b=d$ or $a=d,b=c$.

2000 Belarus Team Selection Test, 4.1

Find all functions $f ,g,h : R\to R$ such that $f(x+y^3)+g(x^3+y) = h(xy)$ for all $x,y \in R$

2020 Swedish Mathematical Competition, 3

Determine all bounded functions $f: R \to R$, such that $f (f (x) + y) = f (x) + f (y)$, for all real $x, y$.

2016 Benelux, 3

Find all functions $f :\Bbb{ R}\to \Bbb{Z}$ such that $$\left( f(f(y) - x) \right)^2+ f(x)^2 + f(y)^2 = f(y) \cdot \left( 1 + 2f(f(y)) \right),$$ for all $x, y \in \Bbb{R}.$

2017 Bulgaria EGMO TST, 1

Let $\mathbb{Q^+}$ denote the set of positive rational numbers. Determine all functions $f: \mathbb{Q^+} \to \mathbb{Q^+}$ that satisfy the conditions \[ f \left( \frac{x}{x+1}\right) = \frac{f(x)}{x+1} \qquad \text{and} \qquad f \left(\frac{1}{x}\right)=\frac{f(x)}{x^3}\] for all $x \in \mathbb{Q^+}.$

2016 Kosovo National Mathematical Olympiad, 4

Let be $f: (0,+\infty)\rightarrow \mathbb{R}$ monoton-decreasing . If $f(2a^2+a+1)<f(3a^2-4a+1)$ find interval of $a$ .

2020 BMT Fall, 5

Let $f:\mathbb{R}^+\to \mathbb{R}^+$ be a function such that for all $x,y \in \mathbb{R}+,\, f(x)f(y)=f(xy)+f\left(\frac{x}{y}\right)$, where $\mathbb{R}^+$ represents the positive real numbers. Given that $f(2)=3$, compute the last two digits of $f\left(2^{2^{2020}}\right)$.

2004 IMO Shortlist, 4

Find all polynomials $f$ with real coefficients such that for all reals $a,b,c$ such that $ab+bc+ca = 0$ we have the following relations \[ f(a-b) + f(b-c) + f(c-a) = 2f(a+b+c). \]

2013 Taiwan TST Round 1, 3

Find all $g:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x,y\in R$, \[(4x+g(x)^2)g(y)=4g(\frac{y}{2}g(x))+4xyg(x)\]

2019 Brazil National Olympiad, 3

Let $\mathbb{R}_{>0}$ be the set of the positive real numbers. Find all functions $f:\mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ such that $$f(xy+f(x))=f(f(x)f(y))+x$$ for all positive real numbers $x$ and $y$.

2024 Turkey EGMO TST, 2

Find all functions $f:\mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$ such that the conditions $\quad a) \quad a-b \mid f(a)-f(b)$ for all $a\neq b$ and $a,b \in \mathbb{Z}^{+}$ $\quad b) \quad f(\varphi(a))=\varphi(f(a))$ for all $a \in \mathbb{Z}^{+}$ where $\varphi$ is the Euler's totient function. holds

1993 Tournament Of Towns, (377) 5

Does there exist a piecewise linear function $f$ defined on the segment [$-1,1]$ (including the ends) such that $f(f(x)) = -x$ for all x? (A function is called piecewise linear if its graph is the union of a finite set of points and intervals; it may be discontinuous).

2018 China Team Selection Test, 6

Let $M,a,b,r$ be non-negative integers with $a,r\ge 2$, and suppose there exists a function $f:\mathbb{Z}\rightarrow\mathbb{Z}$ satisfying the following conditions: (1) For all $n\in \mathbb{Z}$, $f^{(r)}(n)=an+b$ where $f^{(r)}$ denotes the composition of $r$ copies of $f$ (2) For all $n\ge M$, $f(n)\ge 0$ (3) For all $n>m>M$, $n-m|f(n)-f(m)$ Show that $a$ is a perfect $r$-th power.

2011 India National Olympiad, 6

Find all functions $f:\mathbb{R}\to \mathbb R$ satisfying \[f(x+y)f(x-y)=\left(f(x)+f(y)\right)^2-4x^2f(y),\] For all $x,y\in\mathbb R$.

2016 IMO Shortlist, N1

For any positive integer $k$, denote the sum of digits of $k$ in its decimal representation by $S(k)$. Find all polynomials $P(x)$ with integer coefficients such that for any positive integer $n \geq 2016$, the integer $P(n)$ is positive and $$S(P(n)) = P(S(n)).$$ [i]Proposed by Warut Suksompong, Thailand[/i]

1972 Vietnam National Olympiad, 1

Let $\alpha$ be an arbitrary angle and let $x = cos\alpha, y = cosn\alpha$ ($n \in Z$). i) Prove that to each value $x \in [-1, 1]$ corresponds one and only one value of $y$. Thus we can write $y$ as a function of $x, y = T_n(x)$. Compute $T_1(x), T_2(x)$ and prove that $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. From this it follows that $T_n(x)$ is a polynomial of degree $n$. ii) Prove that the polynomial $T_n(x$) has $n$ distinct roots in $[-1, 1]$.

2025 Vietnam Team Selection Test, 1

Find all functions $f: \mathbb{Q}^+ \to \mathbb{Q}^+$ such that $$\dfrac{f(x)f(y)}{f(xy)} = \dfrac{\left( \sqrt{f(x)} + \sqrt{f(y)} \right)^2}{f(x+y)}$$ holds for all positive rational numbers $x, y$.

2005 VJIMC, Problem 3

Find all reals $\lambda$ for which there is a nonzero polynomial $P$ with real coefficients such that $$\frac{P(1)+P(3)+P(5)+\ldots+P(2n-1)}n=\lambda P(n)$$for all positive integers $n$, and find all such polynomials for $\lambda=2$.

2019 ELMO Shortlist, A4

Find all nondecreasing functions $f:\mathbb R\to \mathbb R$ such that, for all $x,y\in \mathbb R$, $$f(f(x))+f(y)=f(x+f(y))+1.$$ [i]Proposed by Carl Schildkraut[/i]