This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2022 IFYM, Sozopol, 6

For the function $f : Z^2_{\ge0} \to Z_{\ge 0}$ it is known that $$f(0, j) = f(i, 0) = 1, \,\,\,\,\, \forall i, j \in N_0$$ $$f(i, j) = if (i, j - 1) + jf(i - 1, j),\,\,\,\,\, \forall i, j \in N$$ Prove that for every natural number $n$ the following inequality holds: $$\sum_{0\le i+j\le n+1} f(i, j) \le 2 \left(\sum^n_{k=0}\frac{1}{k!}\right)\left(\sum^n_{p=1}p!\right)+ 3$$

2006 Federal Competition For Advanced Students, Part 2, 2

Find all monotonous functions $ f: \mathbb{R} \to \mathbb{R}$ that satisfy the following functional equation: \[f(f(x)) \equal{} f( \minus{} f(x)) \equal{} f(x)^2.\]

2011 IFYM, Sozopol, 7

Find all function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $f(x+y)-2f(x-y)+f(x)-2f(y)=y-2,\forall x,y\in \mathbb{R}$.

2011 Belarus Team Selection Test, 3

Find all functions $f: R \to R ,g: R \to R$ satisfying the following equality $f(f(x+y))=xf(y)+g(x)$ for all real $x$ and $y$. I. Gorodnin

2021 Korea Junior Math Olympiad, 5

Determine all functions $f \colon \mathbb{R} \to \mathbb{R}$ satisfying $$f(f(x+y)-f(x-y))=y^2f(x)$$ for all $x, y \in \mathbb{R}$.

2002 Canada National Olympiad, 5

Let $\mathbb N = \{0,1,2,\ldots\}$. Determine all functions $f: \mathbb N \to \mathbb N$ such that \[ xf(y) + yf(x) = (x+y) f(x^2+y^2) \] for all $x$ and $y$ in $\mathbb N$.

2024 Kosovo Team Selection Test, P3

Find all functions $f:\mathbb R\to\mathbb R$ such that $$(x-y)f(x+y) - (x+y)f(x-y) = 2y(f(x)-f(y) - 1)$$for all $x, y\in\mathbb R$.

2005 IMO Shortlist, 4

Find all functions $ f: \mathbb{R}\to\mathbb{R}$ such that $ f(x+y)+f(x)f(y)=f(xy)+2xy+1$ for all real numbers $ x$ and $ y$. [i]Proposed by B.J. Venkatachala, India[/i]

2024 Bulgaria National Olympiad, 3

Find all functions $f:\mathbb {R}^{+} \rightarrow \mathbb{R}^{+}$, such that $$f(af(b)+a)(f(bf(a))+a)=1$$ for any positive reals $a, b$.

2008 IMC, 1

Find all continuous functions $f: \mathbb{R}\to \mathbb{R}$ such that \[ f(x)-f(y)\in \mathbb{Q}\quad \text{ for all }\quad x-y\in\mathbb{Q} \]

2022 SG Originals, Q3

Find all functions $f:\mathbb{Z}^+\rightarrow \mathbb{Z}^+$ satisfying $$m!!+n!!\mid f(m)!!+f(n)!!$$for each $m,n\in \mathbb{Z}^+$, where $n!!=(n!)!$ for all $n\in \mathbb{Z}^+$. [i]Proposed by DVDthe1st[/i]

2024 Taiwan Mathematics Olympiad, 3

Find all functions $f$ from real numbers to real numbers such that $$2f((x+y)^2)=f(x+y)+(f(x))^2+(4y-1)f(x)-2y+4y^2$$ holds for all real numbers $x$ and $y$.

2020 Belarusian National Olympiad, 11.6

Functions $f(x)$ and $g(x)$ are defined on the set of real numbers and take real values. It is known that $g(x)$ takes all real values, $g(0)=0$, and for all $x,y \in \mathbb{R}$ the following equality holds $$f(x+f(y))=f(x)+g(y)$$ Prove that $g(x+y)=g(x)+g(y)$ for all $x,y \in \mathbb{R}$.

2016 Federal Competition For Advanced Students, P2, 1

Let $\alpha\in\mathbb{Q}^+$. Determine all functions $f:\mathbb{Q}^+\to\mathbb{Q}^+$ that for all $x,y\in\mathbb{Q}^+$ satisfy the equation \[ f\left(\frac{x}{y}+y\right) ~=~ \frac{f(x)}{f(y)}+f(y)+\alpha x.\] Here $\mathbb{Q}^+$ denote the set of positive rational numbers. (Proposed by Walther Janous)

2019 Costa Rica - Final Round, 4

Let $g: R \to R$ be a linear function such that $g (1) = 0$. If $f: R \to R$ is a quadratic function such what $g (x^2) = f (x)$ and $f (x + 1) - f (x - 1) = x$ for all $x \in R$. Determine the value of $f (2019)$.

1990 IMO, 1

Let $ {\mathbb Q}^ \plus{}$ be the set of positive rational numbers. Construct a function $ f : {\mathbb Q}^ \plus{} \rightarrow {\mathbb Q}^ \plus{}$ such that \[ f(xf(y)) \equal{} \frac {f(x)}{y} \] for all $ x$, $ y$ in $ {\mathbb Q}^ \plus{}$.

2017-IMOC, A2

Find all functions $f:\mathbb N\to\mathbb N$ such that \begin{align*} x+f(y)&\mid f(y+f(x))\\ f(x)-2017&\mid x-2017\end{align*}

1995 Austrian-Polish Competition, 4

Determine all polynomials $P(x)$ with real coefficients such that $P(x)^2 + P\left(\frac{1}{x}\right)^2= P(x^2)P\left(\frac{1}{x^2}\right)$ for all $x$.

2000 Brazil Team Selection Test, Problem 2

Find all functions $f:\mathbb R\to\mathbb R$ such that (i) $f(0)=1$; (ii) $f(x+f(y))=f(x+y)+1$ for all real $x,y$; (iii) there is a rational non-integer $x_0$ such that $f(x_0)$ is an integer.

Russian TST 2015, P3

Find all functions $f : \mathbb{Z} \to\mathbb{ Z}$ such that \[ n^2+4f(n)=f(f(n))^2 \] for all $n\in \mathbb{Z}$. [i]Proposed by Sahl Khan, UK[/i]

2022 Taiwan TST Round 2, A

Determine all functions $f: \mathbb{R}^+ \to \mathbb{R}^+$ satisfying \[f\bigl(x + y^2 f(y)\bigr) = f\bigl(1 + yf(x)\bigr)f(x)\] for any positive reals $x$, $y$, where $\mathbb{R}^+$ is the collection of all positive real numbers. [i]Proposed by Ming Hsiao.[/i]

2001 Nordic, 2

Let ${f}$ be a bounded real function defined for all real numbers and satisfying for all real numbers ${x}$ the condition ${ f \Big(x+\frac{1}{3}\Big) + f \Big(x+\frac{1}{2}\Big)=f(x)+ f \Big(x+\frac{5}{6}\Big)}$ . Show that ${f}$ is periodic.

2003 Nordic, 4

Let ${R^* = R-\{0\}}$ be the set of non-zero real numbers. Find all functions ${f : R^* \rightarrow R^*}$ satisfying ${f(x) + f(y) = f(xy f(x + y))}$, for ${x, y \in R^*}$ and ${ x + y\ne 0 }$.

2000 Moldova National Olympiad, Problem 4

Find all polynomials $P(x)$ with real coefficients that satisfy the relation $$1+P(x)=\frac{P(x-1)+P(x+1)}2.$$

1995 Baltic Way, 10

Find all real-valued functions $f$ defined on the set of all non-zero real numbers such that: (i) $f(1)=1$, (ii) $f\left(\frac{1}{x+y}\right)=f\left(\frac{1}{x}\right)+f\left(\frac{1}{y}\right)$ for all non-zero $x,y,x+y$, (iii) $(x+y)\cdot f(x+y)=xy\cdot f(x)\cdot f(y)$ for all non-zero $x,y,x+y$.