This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 10

1986 All Soviet Union Mathematical Olympiad, 437

Prove that the sum of all numbers representable as $\frac{1}{mn}$, where $m,n$ -- natural numbers, $1 \le m < n \le1986$, is not an integer.

1918 Eotvos Mathematical Competition, 2

Find three distinct natural numbers such that the sum of their reciprocals is an integer.

1986 Tournament Of Towns, (122) 4

Consider subsets of the set $1 , 2,..., N$. For each such subset we can compute the product of the reciprocals of each member. Find the sum of all such products.

2003 Estonia National Olympiad, 4

Call a positive integer [i]lonely [/i] if the sum of reciprocals of its divisors (including $1$ and the integer itself) is not equal to the sum of reciprocals of divisors of any other positive integer. Prove that a) all primes are lonely, b) there exist infinitely many non-lonely positive integers.

2013 NZMOC Camp Selection Problems, 3

Prove that for any positive integer $n > 2$ we can find $n$ distinct positive integers, the sum of whose reciprocals is equal to $1$.

1951 Moscow Mathematical Olympiad, 204

* Given several numbers each of which is less than $1951$ and the least common multiple of any two of which is greater than $1951$. Prove that the sum of their reciprocals is less than $2$.

1948 Moscow Mathematical Olympiad, 141

The sum of the reciprocals of three positive integers is equal to $1$. What are all the possible such triples?

2024 Bulgaria National Olympiad, 3

Find all functions $f:\mathbb {R}^{+} \rightarrow \mathbb{R}^{+}$, such that $$f(af(b)+a)(f(bf(a))+a)=1$$ for any positive reals $a, b$.

2018 Saudi Arabia GMO TST, 1

Let $\{x_n\}$ be a sequence defined by $x_1 = 2$ and $x_{n+1} = x_n^2 - x_n + 1$ for $n \ge 1$. Prove that $$1 -\frac{1}{2^{2^{n-1}}} < \frac{1}{x_1}+\frac{1}{x_2}+ ... +\frac{1}{x_n}< 1 -\frac{1}{2^{2^n}}$$ for all $n$

2022 Mexico National Olympiad, 1

Tags: prime , reciprocal
A number $x$ is "Tlahuica" if there exist prime numbers $p_1,\ p_2,\ \dots,\ p_k$ such that \[x=\frac{1}{p_1}+\frac{1}{p_2}+\dots+\frac{1}{p_k}.\] Find the largest Tlahuica number $x$ such that $0<x<1$ and there exists a positive integer $m\leq 2022$ such that $mx$ is an integer.