Found problems: 622
May Olympiad L2 - geometry, 2016.5
Rosa and Sara play with a triangle $ABC$, right at $B$. Rosa begins by marking two interior points of the hypotenuse $AC$, then Sara marks an interior point of the hypotenuse $AC$ different from those of Rosa. Then, from these three points the perpendiculars to the sides $AB$ and $BC$ are drawn, forming the following figure.
[img]https://cdn.artofproblemsolving.com/attachments/9/9/c964bbacc4a5960bee170865cc43902410e504.png[/img]
Sara wins if the area of the shaded surface is equal to the area of the unshaded surface, in other case wins Rosa. Determine who of the two has a winning strategy.
2025 Bangladesh Mathematical Olympiad, P5
Mugdho and Dipto play a game on a numbered row of $n \geq 5$ squares. At the beginning, a pebble is put on the first square and then the players make consecutive moves; Mugdho starts. During a move a player is allowed to choose one of the following:
[list]
[*] move the pebble one square rightward
[*] move the pebble four squares rightward
[*] move the pebble two squares leftward
[/list]
All of the possible moves are only allowed if the pebble stays within the borders of the square row. The player who moves the pebble to the last square (a. k. a $n$-th) wins. Determine for which values of $n$ each of the players has a winning strategy.
2000 Slovenia National Olympiad, Problem 4
Three boxes with at least one marble in each are given. In each step we double the number of marbles in one of the boxes, taking the required number of boxes from one of the other two boxes. Is it always possible to have one of the boxes empty after several steps?
2020 Durer Math Competition Finals, 7
Santa Claus plays a guessing game with Marvin before giving him his present. He hides the present behind one of $100$ doors, numbered from $1$ to $100$. Marvin can point at a door, and then Santa Claus will reply with one of the following words:
$\bullet$ "hot" if the present lies behind the guessed door,
$\bullet$ "warm" if the guess is not exact but the number of the guessed door differs from that of the present’s door by at most $5$,
$\bullet$ "cold" if the numbers of the two doors differ by more than $5$.
At least how many such guesses does Marvin need, so that he can be certain about where his present is?
Marvin does not necessarily need to make a "hot" guess, just to know the correct door with $100\%$ certainty.
2018 Bosnia and Herzegovina Team Selection Test, 5
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]
1996 Estonia National Olympiad, 5
John and Mary play the following game. First they choose integers $n > m > 0$ and put $n$ sweets on an empty table. Then they start to make moves alternately. A move consists of choosing a nonnegative integer $k\le m$ and taking $k$ sweets away from the table (if $k = 0$ , nothing happens in fact). In doing so no value for $k$ can be chosen more than once (by none of the players) or can be greater than the number of sweets at the table at the moment of choice. The game is over when one of the players can make no more moves.
John and Mary decided that at the beginning Mary chooses the numbers $m$ and $n$ and then John determines whether the performer of the last move wins or looses. Can Mary choose $m$ and $n$ in such way that independently of John’s decision she will be able to win?
2023 May Olympiad, 5
On the table there are $50$ stacks of coins that have $1,2,3,…,50$ coins respectively. Ana and Beto play the following game in turns:
First, Ana chooses one of the $50$ piles on the table, and Beto decides if that pile is for Ana or for him.
Then, Beto chooses one of the $49$ remaining piles on the table, and Ana decides if that pile is for her or for Beto.
They continue playing alternately in this way until one of the players has $25$ batteries.
When that happens, the other player takes all the remaining stacks on the table and whoever has the most coins wins.
Determine which of the two players has a winning strategy.
2023 USA IMO Team Selection Test, 5
Let $m$ and $n$ be fixed positive integers. Tsvety and Freyja play a game on an infinite grid of unit square cells. Tsvety has secretly written a real number inside of each cell so that the sum of the numbers within every rectangle of size either $m$ by $n$ or $n$ by $m$ is zero. Freyja wants to learn all of these numbers.
One by one, Freyja asks Tsvety about some cell in the grid, and Tsvety truthfully reveals what number is written in it. Freyja wins if, at any point, Freyja can simultaneously deduce the number written in every cell of the entire infinite grid (If this never occurs, Freyja has lost the game and Tsvety wins).
In terms of $m$ and $n$, find the smallest number of questions that Freyja must ask to win, or show that no finite number of questions suffice.
[i]Nikolai Beluhov[/i]
1997 Dutch Mathematical Olympiad, 3
a. View the second-degree quadratic equation $x^2+? x +? = 0$
Two players successively put an integer each at the location of a question mark. Show that the second player can always ensure that the quadratic gets two integer solutions.
Note: we say that the quadratic also has two integer solutions, even when they are equal (for example if they are both equal to $3$).
b.View the third-degree equation $x^3 +? x^2 +? x +? = 0$
Three players successively put an integer each at the location of a question mark. The equation appears to have three integer (possibly again the same) solutions. It is given that two players each put a $3$ in the place of a question mark. What number did the third player put? Determine that number and the place where it is placed and prove that only one number is possible.
2020 Caucasus Mathematical Olympiad, 4
Positive integers $n$, $k>1$ are given. Pasha and Vova play a game on a board $n\times k$. Pasha begins, and further they alternate the following moves. On each move a player should place a border of length 1 between two adjacent cells. The player loses if after his move there is no way from the bottom left cell to the top right without crossing any order. Determine who of the players has a winning strategy.
2016 Germany Team Selection Test, 3
In the beginning there are $100$ integers in a row on the blackboard. Kain and Abel then play the following game: A [i]move[/i] consists in Kain choosing a chain of consecutive numbers; the length of the chain can be any of the numbers $1,2,\dots,100$ and in particular it is allowed that Kain only chooses a single number. After Kain has chosen his chain of numbers, Abel has to decide whether he wants to add $1$ to each of the chosen numbers or instead subtract $1$ from of the numbers. After that the next move begins, and so on.
If there are at least $98$ numbers on the blackboard that are divisible by $4$ after a move, then Kain has won.
Prove that Kain can force a win in a finite number of moves.
1998 German National Olympiad, 2
Two pupils $A$ and $B$ play the following game. They begin with a pile of $1998$ matches and $A$ plays first. A player who is on turn must take a nonzero square number of matches from the pile. The winner is the one who makes the last move. Decide who has the winning strategy and give one such strategy.
2024 Middle European Mathematical Olympiad, 3
There are $2024$ mathematicians sitting in a row next to the river Tisza. Each of them is working on exactly one research topic, and if two mathematicians are working on the same topic, everyone sitting between them is also working on it.
Marvin is trying to figure out for each pair of mathematicians whether they are working on the same topic. He is allowed to ask each mathematician the following question: “How many of these 2024 mathematicians are working on your topic?” He asks the questions one by one, so he knows all previous answers before he asks the next one.
Determine the smallest positive integer $k$ such that Marvin can always accomplish his goal with at most $k$ questions.
2008 Dutch IMO TST, 2
Julian and Johan are playing a game with an even number of cards, say $2n$ cards, ($n \in Z_{>0}$). Every card is marked with a positive integer. The cards are shuffled and are arranged in a row, in such a way that the numbers are visible. The two players take turns picking cards. During a turn, a player can pick either the rightmost or the leftmost card. Johan is the first player to pick a card (meaning Julian will have to take the last card). Now, a player’s score is the sum of the numbers on the cards that player acquired during the game.
Prove that Johan can always get a score that is at least as high as Julian’s.
2007 Stars of Mathematics, 4
At a table tennis tournament, each one of the $ n\ge 2 $ participants play with all the others exactly once. Show that, at the end of the tournament, one and only one of these propositions will be true:
$ \text{(1)} $ The players can be labeled with the numbers $ 1,2,...,n, $ such that $ 1 $ won $ 2, 2 $ won $ 3,...,n-1 $ won $ n $ and $ n $ won $ 1. $
$ \text{(2)} $ The players can be partitioned in two nonempty subsets $ A,B, $ such that whichever one from $ A $ won all that are in $ B. $
2022 Rioplatense Mathematical Olympiad, 5
Let $n \ge 4$ and $k$ be positive integers. We consider $n$ lines in the plane between which there are not two parallel nor three concurrent. In each of the $\frac{n(n-1)}{2}$ points of intersection of these lines, $k$ coins are placed. Ana and Beto play the following game in turns: each player, in turn, chooses one of those points that does not share one of the $n$ lines with the point chosen immediately before by the other player, and removes a coin from that point. Ana starts and can choose any point. The player who cannot make his move loses. Determine based on $n$ and $k$ who has a winning strategy.
2021 Kyiv City MO Round 1, 7.1
Mom brought Andriy and Olesya $4$ balls with the numbers $1, 2, 3$ and $4$ written on them (one on each ball). She held $2$ balls in each hand and did not know which numbers were written on the balls in each hand. The mother asked Andriy to take a ball with a higher number from each hand, and then to keep the ball with the lower number from the two balls he took. After that, she asked Olesya to take two other balls, and out of these two, keep the ball with the higher number.
Does the mother know with certainty, which child has the ball with the higher number?
[i]Proposed by Bogdan Rublov[/i]
2022 Switzerland Team Selection Test, 3
A hunter and an invisible rabbit play a game on an infinite square grid. First the hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter, and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent if they share an edge). The hunter wins if after some finite time either:[list][*]the rabbit cannot move; or
[*]the hunter can determine the cell in which the rabbit started.[/list]Decide whether there exists a winning strategy for the hunter.
[i]Proposed by Aron Thomas[/i]
2018 Greece Team Selection Test, 4
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]
2008 Denmark MO - Mohr Contest, 3
The numbers from $1$ to $500$ are written on the board. Two players $A$ and $B$ erase alternately one number at a time, and $A$ deletes the first number. If the sum of the last two number on the board is divisible by $3$, $B$ wins, otherwise $A$ wins. Which player can lay out a strategy that ensures this player's victory?
2021 Romania Team Selection Test, 2
Let $N\geq 4$ be a fixed positive integer. Two players, $A$ and $B$ are forming an ordered set $\{x_1,x_2,...\},$ adding elements alternatively. $A$ chooses $x_1$ to be $1$ or $-1,$ then $B$ chooses $x_2$ to be $2$ or $-2,$ then $A$ chooses $x_3$ to be $3$ or $-3,$ and so on. (at the $k^{th}$ step, the chosen number must always be $k$ or $-k$)
The winner is the first player to make the sequence sum up to a multiple of $N.$ Depending on $N,$ find out, with proof, which player has a winning strategy.
2024 Kyiv City MO Round 1, Problem 3
Let $n>1$ be a given positive integer. Petro and Vasyl play the following game. They take turns making moves and Petro goes first. In one turn, a player chooses one of the numbers from $1$ to $n$ that wasn't selected before and writes it on the board. The first player after whose turn the product of the numbers on the board will be divisible by $n$ loses. Who wins if every player wants to win? Find answer for each $n>1$.
[i]Proposed by Mykhailo Shtandenko, Anton Trygub[/i]
2018 IMO Shortlist, C2
A [i]site[/i] is any point $(x, y)$ in the plane such that $x$ and $y$ are both positive integers less than or equal to 20.
Initially, each of the 400 sites is unoccupied. Amy and Ben take turns placing stones with Amy going first. On her turn, Amy places a new red stone on an unoccupied site such that the distance between any two sites occupied by red stones is not equal to $\sqrt{5}$. On his turn, Ben places a new blue stone on any unoccupied site. (A site occupied by a blue stone is allowed to be at any distance from any other occupied site.) They stop as soon as a player cannot place a stone.
Find the greatest $K$ such that Amy can ensure that she places at least $K$ red stones, no matter how Ben places his blue stones.
[i]Proposed by Gurgen Asatryan, Armenia[/i]
2020 Dutch IMO TST, 2
Ward and Gabrielle are playing a game on a large sheet of paper. At the start of the game, there are $999$ ones on the sheet of paper. Ward and Gabrielle each take turns alternatingly, and Ward has the first turn.
During their turn, a player must pick two numbers a and b on the sheet such that $gcd(a, b) = 1$, erase these numbers from the sheet, and write the number $a + b$ on the sheet. The first player who is not able to do so, loses.
Determine which player can always win this game.
2018 Thailand TST, 1
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]