This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 622

2018 Istmo Centroamericano MO, 2

Let $n> 1$ be an odd integer. On a square surface have been placed $n^2 - 1$ white slabs and a black slab on the center. Two workers $A$ and $B$ take turns removing them, betting that whoever removes black will lose. First $A$ picks a slab; if it has row number $i \ge (n + 1) / 2$, then it will remove all tiles from rows with number greater than or equal to$ i$, while if $i <(n + 1) / 2$, then it will remove all tiles from the rows with lesser number or equal to $i$. Proceed in a similar way with columns. Then $B$ chooses one of the remaining tiles and repeats the process. Determine who has a winning strategy and describe it. Note: Row and column numbering is ascending from top to bottom and from left to right.

2018 Peru Cono Sur TST, 10

Let $n$ be a positive integer. Alex plays on a row of 9 squares as follows. Initially, all squares are empty. In each turn, Alex must perform exactly one of the following moves: $(i)\:$ Choose a number of the form $2^j$, with $j$ a non-negative integer, and place it in an empty square. $(ii)\:$ Choose two (not necessarily consecutive) squares containing the same number, say $2^j$. Replace the number in one of the squares with $2^{j+1}$ and erase the number in the other square. At the end of the game, one square contains the number $2^n$, while the other squares are empty. Determine, as a function of $n$, the maximum number of turns Alex can make.

2023 JBMO Shortlist, C3

Tags: combinatorics , game , grid
Alice and Bob play the following game on a $100\times 100$ grid, taking turns, with Alice starting first. Initially the grid is empty. At their turn, they choose an integer from $1$ to $100^2$ that is not written yet in any of the cells and choose an empty cell, and place it in the chosen cell. When there is no empty cell left, Alice computes the sum of the numbers in each row, and her score is the maximum of these $100$ numbers. Bob computes the sum of the numbers in each column, and his score is the maximum of these $100$ numbers. Alice wins if her score is greater than Bob's score, Bob wins if his score is greater than Alice's score, otherwise no one wins. Find if one of the players has a winning strategy, and if so which player has a winning strategy. [i]Théo Lenoir, France[/i]

2019 Hong Kong TST, 3

Let $n$ be a given positive integer. Sisyphus performs a sequence of turns on a board consisting of $n + 1$ squares in a row, numbered $0$ to $n$ from left to right. Initially, $n$ stones are put into square $0$, and the other squares are empty. At every turn, Sisyphus chooses any nonempty square, say with $k$ stones, takes one of these stones and moves it to the right by at most $k$ squares (the stone should say within the board). Sisyphus' aim is to move all $n$ stones to square $n$. Prove that Sisyphus cannot reach the aim in less than \[ \left \lceil \frac{n}{1} \right \rceil + \left \lceil \frac{n}{2} \right \rceil + \left \lceil \frac{n}{3} \right \rceil + \dots + \left \lceil \frac{n}{n} \right \rceil \] turns. (As usual, $\lceil x \rceil$ stands for the least integer not smaller than $x$. )

Kvant 2021, M2679

The number 7 is written on a board. Alice and Bob in turn (Alice begins) write an additional digit in the number on the board: it is allowed to write the digit at the beginning (provided the digit is nonzero), between any two digits or at the end. If after someone’s turn the number on the board is a perfect square then this person wins. Is it possible for a player to guarantee the win? [i]Alexandr Gribalko[/i]

1998 Slovenia National Olympiad, Problem 4

Two players play the following game starting with one pile of at least two stones. A player in turn chooses one of the piles and divides it into two or three nonempty piles. The player who cannot make a legal move loses the game. Which player has a winning strategy?

2019 China Team Selection Test, 6

Let $k$ be a positive real. $A$ and $B$ play the following game: at the start, there are $80$ zeroes arrange around a circle. Each turn, $A$ increases some of these $80$ numbers, such that the total sum added is $1$. Next, $B$ selects ten consecutive numbers with the largest sum, and reduces them all to $0$. $A$ then wins the game if he/she can ensure that at least one of the number is $\geq k$ at some finite point of time. Determine all $k$ such that $A$ can always win the game.

2018 Stanford Mathematics Tournament, 2

Consider a game played on the integers in the closed interval $[1, n]$. The game begins with some tokens placed in $[1, n]$. At each turn, tokens are added or removed from$ [1, n]$ using the following rule: For each integer $k \in [1, n]$, if exactly one of $k - 1$ and $k + 1$ has a token, place a token at $k$ for the next turn, otherwise leave k blank for the next turn. We call a position [i]static [/i] if no changes to the interval occur after one turn. For instance, the trivial position with no tokens is static because no tokens are added or removed after a turn (because there are no tokens). Find all non-trivial static positions.

2003 Switzerland Team Selection Test, 5

There are $n$ pieces on the squares of a $5 \times 9$ board, at most one on each square at any time during the game. A move in the game consists of simultaneously moving each piece to a neighboring square by side, under the restriction that a piece having been moved horizontally in the previous move must be moved vertically and vice versa. Find the greatest value of $n$ for which there exists an initial position starting at which the game can be continued until the end of the world.

KoMaL A Problems 2020/2021, A. 795

The following game is played with a group of $n$ people and $n+1$ hats are numbered from $1$ to $n+1.$ The people are blindfolded and each of them puts one of the $n+1$ hats on his head (the remaining hat is hidden). Now, a line is formed with the $n$ people, and their eyes are uncovered: each of them can see the numbers on the hats of the people standing in front of him. Now, starting from the last person (who can see all the other players) the players take turns to guess the number of the hat on their head, but no two players can guess the same number (each player hears all the guesses from the other players). What is the highest number of guaranteed correct guesses, if the $n$ people can discuss a common strategy? [i]Proposed by Viktor Kiss, Budapest[/i]

2015 Costa Rica - Final Round, LR3

Ana & Bruno decide to play a game with the following rules.: a) Ana has cards $1, 3, 5,7,..., 2n-1$ b) Bruno has cards $2, 4,6, 8,...,2n$ During the first turn and all odd turns afterwards, Bruno chooses one of his cards first and reveals it to Ana, and Ana chooses one of her cards second. Whoever's card is higher gains a point. During the second turn and all even turns afterwards, Ana chooses one of her cards first and reveals it to Bruno, and Bruno chooses one of his cards second. Similarly, whoever's card is higher gains a point. During each turn, neither player can use a card they have already used on a previous turn. The game ends when all cards have been used after $n$ turns. Determine the highest number of points Ana can earn, and how she manages to do this.

2019 Peru EGMO TST, 4

Consider the numbers from $1$ to $32$. A game is made by placing all the numbers in pairs and replacing each pair with the largest prime divisor of the sum of the numbers of that couple. For example, if we match the $32$ numbers as: $(1, 2), (3,4),(5, 6), (7, 8),..., (27, 28),(29, 30), (31,32)$, we get the following list of $16$ numbers: $3,7,11,5,...,11,59,7$. where there are repetitions. The game continues in a similar way until in the end only one number remains. Determine the highest possible value from the number that remains at the end.

2016 Auckland Mathematical Olympiad, 2

The number $328$ is written on the board. Two players alternate writing positive divisors of $328$ on the board, subject to the following rules: $\bullet$ No divisor of a previously written number may be written. $\bullet$ The player who writes 328 loses. Who has a winning strategy, the first player or the second player?

2022 European Mathematical Cup, 1

Let $n\geq 3$ be a positive integer. Alice and Bob are playing a game in which they take turns colouring the vertices of a regular $n$-gon. Alice plays the first move. Initially, no vertex is coloured. Both players start the game with $0$ points. In their turn, a player colours a vertex $V$ which has not been coloured and gains $k$ points where $k$ is the number of already coloured neighbouring vertices of $V$. (Thus, $k$ is either $0$, $1$ or $2$.) The game ends when all vertices have been coloured and the player with more points wins; if they have the same number of points, no one wins. Determine all $n\geq 3$ for which Alice has a winning strategy and all $n\geq 3$ for which Bob has a winning strategy.

2018 Slovenia Team Selection Test, 2

Ana and Bojan are playing a game: Ana chooses positive integers $a$ and $b$ and each one gets $2016$ pieces of paper, visible to both - Ana gets the pieces with the numbers $a+1$, $a+2$, $\ldots$, $a+2016$ and Bojan gets the pieces with the numbers $b+1$, $b+2$, $\ldots$, $b+2016$ on them. Afterwards, one of them writes the number $a+b$ on the board. In every move, Ana chooses one of her pieces of paper and hands it to Bojan who chooses one of his own, writes their sum on the board and removes them both from the game. When they run out of pieces, they multiply the numbers on the board together. If the result has the same remainder than $a+b$ when divided by $2017$, Bojan wins, otherwise, Ana wins. Who has the winning strategy?

2011 Argentina National Olympiad, 2

Three players $A,B$ and $C$ take turns removing stones from a pile of $N$ stones. They move in the order $A,B,C,A,B,C,…A$. The game begins, and the one who takes out the last stone loses the game. The players $A$ and $C$ team up against $B$ , they agree on a joint strategy. $B$ can take in each play $1,2,3,4$ or $5$ stones, while $A$ and $C$, they can each get $1,2$ or $3$ stones each turn. Determine for what values ​​of $N$ have winning strategy $A$ and $C$, and for what values ​​the winning strategy is from $B$. .

2001 German National Olympiad, 3

Wiebke and Stefan play the following game on a rectangular sheet of paper. They start with a rectangle with $60$ rows and $40$ columns and cut it in turns into smaller rectangles. The cuttings must be made along the gridlines, and a player in turn may cut only one smaller rectangle. By that, Stefan makes only vertical cuts, while Wiebke makes only horizontal cuts. A player who cannot make a regular move loses the game. (a) Who has a winning strategy if Stefan makes the first move? (b) Who has a winning strategy if Wiebke makes the first move?

2025 All-Russian Olympiad, 11.6

$100$ ones are written in a circle. Petya and Vasya take turns making \( 10^{10} \) moves each. In each move, Petya chooses 9 consecutive numbers and decreases each by $2$. Vasya chooses $10$ consecutive numbers and increases each by $1$. They alternate turns, starting with Petya. Prove that Vasya can act in such a way that after each of his moves, there are always at least five positive numbers, regardless of how Petya plays. \\

2016 Argentina National Olympiad, 3

Agustín and Lucas, by turns, each time mark a box that has not yet been marked on a $101\times 101$ grid board. Augustine starts the game. You cannot check a box that already has two checked boxes in its row or column. The one who can't make his move loses. Decide which of the two players has a winning strategy.

1990 IMO, 2

Given an initial integer $ n_0 > 1$, two players, $ {\mathcal A}$ and $ {\mathcal B}$, choose integers $ n_1$, $ n_2$, $ n_3$, $ \ldots$ alternately according to the following rules : [b]I.)[/b] Knowing $ n_{2k}$, $ {\mathcal A}$ chooses any integer $ n_{2k \plus{} 1}$ such that \[ n_{2k} \leq n_{2k \plus{} 1} \leq n_{2k}^2. \] [b]II.)[/b] Knowing $ n_{2k \plus{} 1}$, $ {\mathcal B}$ chooses any integer $ n_{2k \plus{} 2}$ such that \[ \frac {n_{2k \plus{} 1}}{n_{2k \plus{} 2}} \] is a prime raised to a positive integer power. Player $ {\mathcal A}$ wins the game by choosing the number 1990; player $ {\mathcal B}$ wins by choosing the number 1. For which $ n_0$ does : [b]a.)[/b] $ {\mathcal A}$ have a winning strategy? [b]b.)[/b] $ {\mathcal B}$ have a winning strategy? [b]c.)[/b] Neither player have a winning strategy?

1998 Slovenia National Olympiad, Problem 4

On every square of a chessboard, there are as many grains as shown on the picture. Starting from an arbitrary square, a knight starts a journey over the chessboard. After every move it eats up all the grains from the square it arrived to, but when it leaves, the same number of grains is put back on the square. After some time the knight returns to its initial square. Prove that the total number of grains the knight has eaten up during the journey is divisible by $3$. [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvZC8xL2IwOGZlODYxMDg1MWMwMWUwMjFkOGJkMWQ2MjA4YzIzZmQ5YTc5LnBuZw==&rn=U2NyZWVuIFNob3QgMjAyMS0wNC0yOCBhdCA3LjIzLjA3IEFNLnBuZw==[/img]

2001 Singapore Team Selection Test, 3

A game of Jai Alai has eight players and starts with players $P_1$ and $P_2$ on court and the other players $P_3, P_4, P_5, P_6, P_7, P_8$ waiting in a queue. After each point is played, the loser goes to the end of the queue; the winner adds $1$ point to his score and stays on the court; and the player at the head of the queue comes on to contest the next point. Play continues until someone has scored $7$ points. At that moment, we observe that a total of $37$ points have been scored by all eight players. Determine who has won and justify your answer.

2018 Dutch Mathematical Olympiad, 5

At a quiz show there are three doors. Behind exactly one of the doors, a prize is hidden. You may ask the quizmaster whether the prize is behind the left-hand door. You may also ask whether the prize is behind the right-hand door. You may ask each of these two questions multiple times, in any order that you like. Each time, the quizmaster will answer ‘yes’ or ‘no’. The quizmaster is allowed to lie at most $10$ times. You have to announce in advance how many questions you will be asking (but which questions you will ask may depend on the answers of the quizmaster). What is the smallest number you can announce, such that you can still determine with absolute certainty the door behind which the prize is hidden?

2021 Saudi Arabia Training Tests, 25

The Magician and his Assistant show trick. The Viewer writes on the board the sequence of $N$ digits. Then the Assistant covers some pair of adjacent digits so that they become invisible. Finally, the Magician enters the show, looks at the board and guesses the covered digits and their order. Find the minimal $N$ such that the Magician and his Assistant can agree in advance so that the Magician always guesses right

2024 Kyiv City MO Round 1, Problem 3

Petro and Vasyl play the following game. They take turns making moves and Petro goes first. In one turn, a player chooses one of the numbers from $1$ to $2024$ that wasn't selected before and writes it on the board. The first player after whose turn the product of the numbers on the board will be divisible by $2024$ loses. Who wins if every player wants to win? [i]Proposed by Mykhailo Shtandenko[/i]