Found problems: 136
the 14th XMO, P4
In an $n$ by $n$ grid, each cell is filled with an integer between $1$ and $6$. The outmost cells all contain the number $1$, and any two cells that share a vertex has difference not equal to $3$. For any vertex $P$ inside the grid (not including the boundary), there are $4$ cells that have $P$ has a vertex. If these four cells have exactly three distinct numbers $i$, $j$, $k$ (two cells have the same number), and the two cells with the same number have a common side, we call $P$ an $ijk$-type vertex. Let there be $A_{ijk}$ vertices that are $ijk$-type. Prove that $A_{123}\equiv A_{246} \pmod 2$.
2000 Saint Petersburg Mathematical Olympiad, 11.6
What is the greatest amount of rooks that can be placed on an $n\times n$ board, such that each rooks beats an even number of rooks? A rook is considered to beat another rook, if they lie on one vertical or one horizontal line and no rooks are between them.
[I]Proposed by D. Karpov[/i]
Novosibirsk Oral Geo Oly IX, 2017.1
Petya and Vasya live in neighboring houses (see the plan in the figure). Vasya lives in the fourth entrance. It is known that Petya runs to Vasya by the shortest route (it is not necessary walking along the sides of the cells) and it does not matter from which side he runs around his house. Determine in which entrance he lives Petya .
[img]https://cdn.artofproblemsolving.com/attachments/b/1/741120341a54527b179e95680aaf1c4b98ff84.png[/img]
2006 Mexico National Olympiad, 3
Let $n$ be an integer greater than $1$. In how many ways can we fill all the numbers $1, 2,..., 2n$ in the boxes of a grid of $2\times n$, one in each box, so that any two consecutive numbers are they in squares that share one side of the grid?
1997 Estonia National Olympiad, 4
In a $3n \times 3n$ grid, each square is either black or red. Each red square not on the edge of the grid has exactly five black squares among its eight neighbor squares.. On every black square that not at the edge of the grid, there are exactly four reds in the adjacent squares box. How many black and how many red squares are in the grid?
2023 Kyiv City MO Round 1, Problem 3
Consider all pairs of distinct points on the Cartesian plane $(A, B)$ with integer coordinates. Among these pairs of points, find all for which there exist two distinct points $(X, Y)$ with integer coordinates, such that the quadrilateral $AXBY$ is convex and inscribed.
[i]Proposed by Anton Trygub[/i]
2022 Nigerian MO round 3, Problem 3
A unit square is removed from the corner of an $n \times n$ grid, where $n \geq 2$. Prove that the remainder can be covered by copies of the figures of $3$ or $5$ unit squares depicted in the drawing below.
[asy]
import geometry;
draw((-1.5,0)--(-3.5,0)--(-3.5,2)--(-2.5,2)--(-2.5,1)--(-1.5,1)--cycle);
draw((-3.5,1)--(-2.5,1)--(-2.5,0));
draw((0.5,0)--(0.5,3)--(1.5,3)--(1.5,1)--(3.5,1)--(3.5,0)--cycle);
draw((1.5,0)--(1.5,1));
draw((2.5,0)--(2.5,1));
draw((0.5,1)--(1.5,1));
draw((0.5,2)--(1.5,2));
[/asy]
[b]Note:[/b] Every square must be covered once and figures must not go over the bounds of the grid.
2025 Vietnam National Olympiad, 5
Consider a $3k \times 3k$ square grid (where $k$ is a positive integer), the cells in the grid are coordinated in terms of columns and rows: Cell $(i, j)$ is at the $i^{\text{th}}$ column from left to right and the $j^{\text{th}}$ row from bottom up. We want to place $4k$ marbles in the cells of the grid, with each cell containing at most one marble, such that
- Each row and each column has at least one marble
- For each marble, there is another marble placed on the same row or column with that marble.
a) Assume $k=1$. Determine the number of ways to place the marbles to satisfy the above conditions (Two ways to place marbles are different if there is a cell $(i, j)$ having a marble placed in one way but not in the other way).
b) Assume $k \geq 1$. Find the largest positive integer $N$ such that if we mark any $N$ cells on the board, there is always a way to place $4k$ marbles satisfying the above conditions such that none of the marbles are placed on any of the marked cells.
2013 Germany Team Selection Test, 2
Given a $m\times n$ grid rectangle with $m,n \ge 4$ and a closed path $P$ that is not self intersecting from inner points of the grid, let $A$ be the number of points on $P$ such that $P$ does not turn in them and let $B$ be the number of squares that $P$ goes through two non-adjacent sides of them furthermore let $C$ be the number of squares with no side in $P$. Prove that $$A=B-C+m+n-1.$$
2018 Dutch IMO TST, 1
Suppose a grid with $2m$ rows and $2n$ columns is given, where $m$ and $n$ are positive integers. You may place one pawn on any square of this grid, except the bottom left one or the top right one. After placing the pawn, a snail wants to undertake a journey on the grid. Starting from the bottom left square, it wants to visit every square exactly once, except the one with the pawn on it, which the snail wants to avoid. Moreover, it wants to finish in the top right square. It can only move horizontally or vertically on the grid.
On which squares can you put the pawn for the snail to be able to finish its journey?
2007 Estonia Team Selection Test, 6
Consider a $10 \times 10$ grid. On every move, we colour $4$ unit squares that lie in the intersection of some two rows and two columns. A move is allowed if at least one of the $4$ squares is previously uncoloured. What is the largest possible number of moves that can be taken to colour the whole grid?
2022 Switzerland - Final Round, 4
Let $n \geq 2$ be an integer. Switzerland and Liechtenstein are performing their annual festive show. There is a field divided into $n \times n$ squares, in which the bottom-left square contains a red house with $k$ Swiss gymnasts, and the top-right square contains a blue house with $k$ Liechtensteiner gymnasts. Every other square only has enough space for a single gymnast at a time. Each second either a Swiss gymnast or a Liechtensteiner gymnast moves. The Swiss gymnasts move to either the square immediately above or to the right and the Liechtensteiner gymnasts move either to the square immediately below or to the left. The goal is to move all the Swiss gymnasts to the blue house and all the Liechtensteiner gymnasts to the red house, with the caveat that a gymnast cannot enter a house until all the gymnasts of the other nationality have left. Determine the largest $k$ in terms of $n$ for which this is possible.
1995 Singapore Team Selection Test, 3
Show that a path on a rectangular grid which starts at the northwest corner, goes through each point on the grid exactly once, and ends at the southeast corner divides the grid into two equal halves:
(a) those regions opening north or east; and
(b) those regions opening south or west.
[img]https://cdn.artofproblemsolving.com/attachments/b/e/aa20c9f9bc44bd1e5a9b9e86d49debf0f821b7.png[/img]
(The figure above shows a path meeting the conditions of the problem on a $5 \times 8$ grid.
The shaded regions are those opening north or east while the rest open south or west.)
2018 Estonia Team Selection Test, 2
Find the greatest number of depicted pieces composed of $4$ unit squares that can be placed without overlapping on an $n \times n$ grid (where n is a positive integer) in such a way that it is possible to move from some corner to the opposite corner via uncovered squares (moving between squares requires a common edge). The shapes can be rotated and reflected.
[img]https://cdn.artofproblemsolving.com/attachments/b/d/f2978a24fdd737edfafa5927a8d2129eb586ee.png[/img]
2022 Mexico National Olympiad, 4
Let $n$ be a positive integer. In an $n\times n$ garden, a fountain is to be built with $1\times 1$ platforms covering the entire garden. Ana places all the platforms at a different height. Afterwards, Beto places water sources in some of the platforms. The water in each platform can flow to other platforms sharing a side only if they have a lower height. Beto wins if he fills all platforms with water.
Find the least number of water sources that Beto needs to win no matter how Ana places the platforms.
2017 AIME Problems, 11
Consider arrangements of the $9$ numbers $1, 2, 3, \dots, 9$ in a $3 \times 3$ array. For each such arrangement, let $a_1$, $a_2$, and $a_3$ be the medians of the numbers in rows $1$, $2$, and $3$ respectively, and let $m$ be the median of $\{a_1, a_2, a_3\}$. Let $Q$ be the number of arrangements for which $m = 5$. Find the remainder when $Q$ is divided by $1000$.
2018 SIMO, Q1
Sheldon and Bella play a game on an infinite grid of cells. On each of his turns, Sheldon puts one of the following tetrominoes (reflections and rotations aren't permitted)
[asy]
size(200);
draw((0, 0)--(1, 0)--(1, 2)--(0, 2)--cycle);
draw((1, 1)--(2, 1)--(2, 3)--(1, 3)--cycle);
draw((0,1)--(1,1));
draw((1,2)--(2,2));
draw((5, 0.5)--(6, 0.5)--(6, 1.5)--(5, 1.5)--cycle);
draw((6, 0.5)--(7, 0.5)--(7, 1.5)--(6, 1.5)--cycle);
draw((6, 1.5)--(7, 1.5)--(7, 2.5)--(6, 2.5)--cycle);
draw((7, 1.5)--(8, 1.5)--(8, 2.5)--(7, 2.5)--cycle);
[/asy]
somewhere on the grid without overlap. Then, Bella colors that tetromino such that it has a different color from any other tetromino that shares a side with it. After $2631$ such moves by each player, the game ends, and Sheldon's score is the number of colors used by Bella.
What's the maximum $N$ such that Sheldon can guarantee that his score will be at least $N$?
2024 IRN-SGP-TWN Friendly Math Competition, 1
In a 2025 by 2025 grid, every cell initially contains a `1'. Every minute, we simultaneously replace the number in each cell with the sum of numbers in the cells that share an edge with it. (For example, after the first minute, the number 2 is written in each of the four
corner cells.)
After 2025 minutes, we colour the board in checkerboard fashion, such that the top left corner is black. Find the difference between the sum of numbers in black cells and the sum of numbers in white cells.
[i]Proposed by chorn[/i]
2015 All-Russian Olympiad, 5
It is known that a cells square can be cut into $n$ equal figures of $k$ cells.
Prove that it is possible to cut it into $k$ equal figures of $n$ cells.
2021 Olympic Revenge, 4
On a chessboard, Po controls a white queen and plays, in alternate turns, against an invisible black king (there are only those two pieces on the board). The king cannot move to a square where he would be in check, neither capture the queen. Every time the king makes a move, Po receives a message from beyond that tells which direction the king has moved (up, right, up-right, etc). His goal is to make the king unable to make a movement.
Can Po reach his goal with at most $150$ moves, regardless the starting position of the pieces?
2023 Junior Balkan Mathematical Olympiad, 3
Alice and Bob play the following game on a $100\times 100$ grid, taking turns, with Alice starting first. Initially the grid is empty. At their turn, they choose an integer from $1$ to $100^2$ that is not written yet in any of the cells and choose an empty cell, and place it in the chosen cell. When there is no empty cell left, Alice computes the sum of the numbers in each row, and her score is the maximum of these $100$ numbers. Bob computes the sum of the numbers in each column, and his score is the maximum of these $100$ numbers. Alice wins if her score is greater than Bob's score, Bob wins if his score is greater than Alice's score, otherwise no one wins.
Find if one of the players has a winning strategy, and if so which player has a winning strategy.
[i]Théo Lenoir, France[/i]
2000 ITAMO, 5
A man disposes of sufficiently many metal bars of length $2$ and wants to construct a grill of the shape of an $n \times n$ unit net. He is allowed to fold up two bars at an endpoint or to cut a bar into two equal pieces, but two bars may not overlap or intersect. What is the minimum number of pieces he must use?
2021 Saint Petersburg Mathematical Olympiad, 2
The cells of a $100 \times 100$ table are colored white. In one move, it is allowed to select some $99$ cells from the same row or column and recolor each of them with the opposite color. What is the smallest number of moves needed to get a table with a chessboard coloring?
[i]S. Berlov[/i]
1999 ITAMO, 5
There is a village of pile-built dwellings on a lake, set on the gridpoints of an $m \times n$ rectangular grid. Each dwelling is connected by exactly $p$ bridges to some of the neighboring dwellings (diagonal connections are not allowed, two dwellings can be connected by more than one bridge). Determine for which values $m,n, p$ it is possible to place the bridges so that from any dwelling one can reach any other dwelling.
2012 Tuymaada Olympiad, 1
Tanya and Serezha take turns putting chips in empty squares of a chessboard. Tanya starts with a chip in an arbitrary square. At every next move, Serezha must put a chip in the column where Tanya put her last chip, while Tanya must put a chip in the row where Serezha put his last chip. The player who cannot make a move loses. Which of the players has a winning strategy?
[i]Proposed by A. Golovanov[/i]