This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2019 Jozsef Wildt International Math Competition, W. 22

Let $A$ and $B$ the series: $$A=\sum \limits_{n=1}^{\infty}\frac{C_{2n}^1}{C_{2n}^0+C_{2n}^1+\cdots +C_{2n}^{2n}},\ B=\sum \limits_{n=1}^{\infty}\frac{\Gamma \left(n+\frac{1}{2}\right) }{\Gamma \left(n+\frac{5}{2}\right)}$$Study if $\frac{A}{B}$ is irrational number.

2019 Jozsef Wildt International Math Competition, W. 25

Let $x_i$, $y_i$, $z_i$, $w_i \in \mathbb{R}^+, i = 1, 2,\cdots n$, such that$$\sum \limits_{i=1}^nx_i=nx,\ \sum \limits_{i=1}^ny_i=ny,\ \sum \limits_{i=1}^nw_i=nw $$ $$\Gamma \left(z_i\right)\geq \Gamma \left(w_i\right),\ \sum \limits_{i=1}^n\Gamma \left(z_i\right)=n\Gamma^* (z)$$Then$$\sum \limits_{i=1}^n \frac{\left(\Gamma \left(x_i\right)+\Gamma \left(y_i\right)\right)^2}{\Gamma \left(z_i\right)-\Gamma \left(w_i\right)}\geq n\frac{\left(\Gamma \left(x\right)+\Gamma \left(y\right)\right)^2}{\Gamma^* \left(z\right)-\Gamma \left(w\right)}$$

2016 Miklós Schweitzer, 6

Let $\Gamma(s)$ denote Euler's gamma function. Construct an even entire function $F(s)$ that does not vanish everywhere, for which the quotient $F(s)/\Gamma(s)$ is bounded on the right halfplane $\{\Re(s)>0\}$.