This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

2001 IMO, 4

Let $n$ be an odd integer greater than 1 and let $c_1, c_2, \ldots, c_n$ be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1,2,\ldots,n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1,2,\ldots,n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.

2001 IMO Shortlist, 2

Let $n$ be an odd integer greater than 1 and let $c_1, c_2, \ldots, c_n$ be integers. For each permutation $a = (a_1, a_2, \ldots, a_n)$ of $\{1,2,\ldots,n\}$, define $S(a) = \sum_{i=1}^n c_i a_i$. Prove that there exist permutations $a \neq b$ of $\{1,2,\ldots,n\}$ such that $n!$ is a divisor of $S(a)-S(b)$.

2014 Contests, 2

Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is [i]peaceful[/i] if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.

2023 USEMO, 5

Let $n \ge 2$ be an integer. A cube of size $n \times n \times n$ is dissected into $n^3$ unit cubes. A nonzero real number is written at the center of each unit cube so that the sum of the $n^2$ numbers in each slab of size $1 \times n \times n$, $n \times 1 \times n$, or $n \times n \times 1$ equals zero. (There are a total of $3n$ such slabs, forming three groups of $n$ slabs each such that slabs in the same group are parallel and slabs in different groups are perpendicular.) Could it happen that some plane in three-dimensional space separates the positive and the negative written numbers? (The plane should not pass through any of the numbers.) [i]Nikolai Beluhov[/i]

2014 IMO, 2

Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is [i]peaceful[/i] if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.

2014 IMO Shortlist, C3

Let $n \ge 2$ be an integer. Consider an $n \times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is [i]peaceful[/i] if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k \times k$ square which does not contain a rook on any of its $k^2$ unit squares.

1996 All-Russian Olympiad, 4

In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members. [i]A. Skopenkov[/i]

2006 Canada National Olympiad, 4

Consider a round-robin tournament with $2n+1$ teams, where each team plays each other team exactly one. We say that three teams $X,Y$ and $Z$, form a [i]cycle triplet [/i] if $X$ beats $Y$, $Y$ beats $Z$ and $Z$ beats $X$. There are no ties. a)Determine the minimum number of cycle triplets possible. b)Determine the maximum number of cycle triplets possible.