This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2002 IMC, 12

Let $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ be a convex function whose gradient $\nabla f$ exists at every point of $\mathbb{R}^{n}$ and satisfies the condition $$\exists L>0\; \forall x_{1},x_{2}\in \mathbb{R}^{n}:\;\; ||\nabla f(x_{1})-\nabla f(x_{2})||\leq L||x_{1}-x_{2}||.$$ Prove that $$ \forall x_{1},x_{2}\in \mathbb{R}^{n}:\;\; ||\nabla f(x_{1})-\nabla f(x_{2})||^{2}\leq L\langle\nabla f(x_{1})-\nabla f(x_{2}), x_{1}-x_{2}\rangle. $$