Found problems: 801
2011 Indonesia TST, 2
A graph $G$ with $n$ vertex is called [i]good [/i] if every vertex could be labelled with distinct positive integers which are less than or equal $\lfloor \frac{n^2}{4} \rfloor$ such that there exists a set of nonnegative integers $D$ with the following property: there exists an edge between $2$ vertices if and only if the difference of their labels is in $D$.
Show that there exists a positive integer $N$ such that for every $n \ge N$, there exist a not-good graph with $n$ vertices.
2007 USAMO, 4
An [i]animal[/i] with $n$ [i]cells[/i] is a connected figure consisting of $n$ equal-sized cells[1].
A [i]dinosaur[/i] is an animal with at least $2007$ cells. It is said to be [i]primitive[/i] it its cells cannot be partitioned into two or more dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.
(1) Animals are also called [i]polyominoes[/i]. They can be defined inductively. Two cells are [i]adjacent[/i] if they share a complete edge. A single cell is an animal, and given an animal with $n$ cells, one with $n+1$ cells is obtained by adjoining a new cell by making it adjacent to one or more existing cells.
2023 All-Russian Olympiad, 8
In a country, there are ${}N{}$ cities and $N(N-1)$ one-way roads: one road from $X{}$ to $Y{}$ for each ordered pair of cities $X \neq Y$. Every road has a maintenance cost. For each $k = 1,\ldots, N$ let's consider all the ways to select $k{}$ cities and $N - k{}$ roads so that from each city it is possible to get to some selected city, using only selected roads.
We call such a system of cities and roads with the lowest total maintenance cost $k{}$[i]-optimal[/i]. Prove that cities can be numbered from $1{}$ to $N{}$ so that for each $k = 1,\ldots, N$ there is a $k{}$-optimal system of roads with the selected cities numbered $1,\ldots, k$.
[i]Proposed by V. Buslov[/i]
2022 USAMO, 6
There are $2022$ users on a social network called Mathbook, and some of them are Mathbook-friends. (On Mathbook, friendship is always mutual and permanent.)
Starting now, Mathbook will only allow a new friendship to be formed between two users if they have [i]at least two[/i] friends in common. What is the minimum number of friendships that must already exist so that every user could eventually become friends with every other user?
2019 China Team Selection Test, 6
Given positive integers $d \ge 3$, $r>2$ and $l$, with $2d \le l <rd$. Every vertice of the graph $G(V,E)$ is assigned to a positive integer in $\{1,2,\cdots,l\}$, such that for any two consecutive vertices in the graph, the integers they are assigned to, respectively, have difference no less than $d$, and no more than $l-d$.
A proper coloring of the graph is a coloring of the vertices, such that any two consecutive vertices are not the same color. It's given that there exist a proper subset $A$ of $V$, such that for $G$'s any proper coloring with $r-1$ colors, and for an arbitrary color $C$, either all numbers in color $C$ appear in $A$, or none of the numbers in color $C$ appear in $A$.
Show that $G$ has a proper coloring within $r-1$ colors.
1974 Miklós Schweitzer, 2
Let $ G$ be a $ 2$-connected nonbipartite graph on $ 2n$ vertices. Show that the vertex set of $ G$ can be split into two classes of $ n$ elements such that the edges joining the two classes form a connected, spanning subgraph.
[i]L. Lovasz[/i]
2006 Germany Team Selection Test, 1
Let $n\geq 3$ be a fixed integer. Each side and each diagonal of a regular $n$-gon is labelled with a number from the set $\left\{1;\;2;\;...;\;r\right\}$ in a way such that the following two conditions are fulfilled:
[b]1.[/b] Each number from the set $\left\{1;\;2;\;...;\;r\right\}$ occurs at least once as a label.
[b]2.[/b] In each triangle formed by three vertices of the $n$-gon, two of the sides are labelled with the same number, and this number is greater than the label of the third side.
[b](a)[/b] Find the maximal $r$ for which such a labelling is possible.
[b](b)[/b] [i]Harder version (IMO Shortlist 2005):[/i] For this maximal value of $r$, how many such labellings are there?
[hide="Easier version (5th German TST 2006) - contains answer to the harder version"]
[i]Easier version (5th German TST 2006):[/i] Show that, for this maximal value of $r$, there are exactly $\frac{n!\left(n-1\right)!}{2^{n-1}}$ possible labellings.[/hide]
[i]Proposed by Federico Ardila, Colombia[/i]
2011 Croatia Team Selection Test, 2
There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).
2009 Croatia Team Selection Test, 2
On sport games there was 1991 participant from which every participant knows at least n other participants(friendship is mutual). Determine the lowest possible n for which we can be sure that there are 6 participants between which any two participants know each other.
1987 IMO Longlists, 41
Let $n$ points be given arbitrarily in the plane, no three of them collinear. Let us draw segments between pairs of these points. What is the minimum number of segments that can be colored red in such a way that among any four points, three of them are connected by segments that form a red triangle?
2005 Poland - Second Round, 3
In space are given $n\ge 2$ points, no four of which are coplanar. Some of these points are connected by segments. Let $K$ be the number of segments $(K>1)$ and $T$ be the number of formed triangles. Prove that $9T^2<2K^3$.
2015 India IMO Training Camp, 3
Let $G$ be a simple graph on the infinite vertex set $V=\{v_1, v_2, v_3,\ldots\}$. Suppose every subgraph of $G$ on a finite vertex subset is $10$-colorable, Prove that $G$ itself is $10$-colorable.
2021 China Team Selection Test, 2
Given positive integers $n,k$, $n \ge 2$. Find the minimum constant $c$ satisfies the following assertion:
For any positive integer $m$ and a $kn$-regular graph $G$ with $m$ vertices, one could color the vertices of $G$ with $n$ different colors, such that the number of monochrome edges is at most $cm$.
2022 Estonia Team Selection Test, 6
The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a [i]path from $X$ to $Y$[/i] is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called [i]diverse[/i] if no road belongs to two or more paths in the collection.
Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$.
[i]Proposed by Warut Suksompong, Thailand[/i]
2018 IFYM, Sozopol, 4
The towns in one country are connected with bidirectional airlines, which are paid in at least one of the two directions. In a trip from town A to town B there are exactly 22 routes that are free. Find the least possible number of towns in the country.
2004 All-Russian Olympiad, 2
A country has 1001 cities, and each two cities are connected by a one-way street. From each city exactly 500 roads begin, and in each city 500 roads end. Now an independent republic splits itself off the country, which contains 668 of the 1001 cities. Prove that one can reach every other city of the republic from each city of this republic without being forced to leave the republic.
2020 Durer Math Competition Finals, 5
Prove that the number of orientations of a connected $3$-regular graph on $2n$ vertices where the number of vertices with indegree $0$ and outdegree $0$ are equal, is exactly $2^{n+1}$ $ {2n} \choose {n}$.
2000 Belarus Team Selection Test, 7.3
A game is played by $n$ girls ($n \geq 2$), everybody having a ball. Each of the $\binom{n}{2}$ pairs of players, is an arbitrary order, exchange the balls they have at the moment. The game is called nice [b]nice[/b] if at the end nobody has her own ball and it is called [b]tiresome[/b] if at the end everybody has her initial ball. Determine the values of $n$ for which there exists a nice game and those for which there exists a tiresome game.
1985 IMO Longlists, 91
Thirty-four countries participated in a jury session of the IMO, each represented by the leader and the deputy leader of the team. Before the meeting, some participants exchanged handshakes, but no team leader shook hands with his deputy. After the meeting, the leader of the Illyrian team asked every other participant the number of people they had shaken hands with, and all the answers she got were different. How many people did the deputy leader of the Illyrian team greet ?
2016 Croatia Team Selection Test, Problem 2
Let $S$ be a set of $N \ge 3$ points in the plane. Assume that no $3$ points in $S$ are collinear. The segments with both endpoints in $S$ are colored in two colors.
Prove that there is a set of $N - 1$ segments of the same color which don't intersect except in their endpoints such that no subset of them forms a polygon with positive area.
2019 China Girls Math Olympiad, 8
For a tournament with $8$ vertices, if from any vertex it is impossible to follow a route to return to itself, we call the graph a [i]good[/i] graph. Otherwise, we call it a [i]bad[/i] graph. Prove that
$(1)$ there exists a tournament with $8$ vertices such that after changing the orientation of any at most $7$ edges of the tournament, the graph is always a[i]bad[/i] graph;
$(2)$ for any tournament with $8$ vertices, one can change the orientation of at most $8$ edges of the tournament to get a [i]good[/i] graph.
(A tournament is a complete graph with directed edges.)
1995 All-Russian Olympiad, 7
Numbers 1 and −1 are written in the cells of a board 2000×2000. It is known that the sum of all the numbers in the board is positive. Show that one can select 1000 rows and 1000 columns such that the sum of numbers written in their intersection cells is at least 1000.
[i]D. Karpov[/i]
2019 Dutch IMO TST, 4
There are $300$ participants to a mathematics competition. After the competition some of the contestants play some games of chess. Each two contestants play at most one game against each other. There are no three contestants, such that each of them plays against each other. Determine the maximum value of $n$ for which it is possible to satisfy the following conditions at the same time: each contestant plays at most $n$ games of chess, and for each $m$ with $1 \le m \le n$, there is a contestant playing exactly $m$ games of chess.
2005 Junior Tuymaada Olympiad, 4
The organizers of a mathematical congress found that if they accomodate any participant in a room the rest can be accomodated in double rooms so that 2 persons living in each room know each other. Prove that every participant can organize a round table on graph theory for himself and an even number of other people so that each participant of the round table knows both his neigbours.
[i]Proposed by S. Berlov, S. Ivanov[/i]
1990 Putnam, B4
Let $G$ be a finite group of order $n$ generated by $a$ and $b$. Prove or disprove: there is a sequence \[ g_1, g_2, g_3, \cdots, g_{2n} \] such that:
$(1)$ every element of $G$ occurs exactly twice, and
$(2)$ $g_{i+1}$ equals $g_{i}a$ or $g_ib$ for $ i = 1, 2, \cdots, 2n $. (interpret $g_{2n+1}$ as $g_1$.)