This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 801

2001 Turkey Team Selection Test, 1

Each one of $2001$ children chooses a positive integer and writes down his number and names of some of other $2000$ children to his notebook. Let $A_c$ be the sum of the numbers chosen by the children who appeared in the notebook of the child $c$. Let $B_c$ be the sum of the numbers chosen by the children who wrote the name of the child $c$ into their notebooks. The number $N_c = A_c - B_c$ is assigned to the child $c$. Determine whether all of the numbers assigned to the children could be positive.

1989 IMO Longlists, 59

Given seven points in the plane, some of them are connected by segments such that: [b](i)[/b] among any three of the given points, two are connected by a segment; [b](ii)[/b] the number of segments is minimal. How many segments does a figure satisfying [b](i)[/b] and [b](ii)[/b] have? Give an example of such a figure.

2019 PUMaC Individual Finals A, B, B2

Let $G = (V, E)$ be a simple connected graph. Show that there exists a subset of edges $F \subseteq E$ such that every vertex in $H = (V, F)$ has odd degree if and only if $|V |$ is even. Note: A connected graph is a graph such that any two vertices have a sequence of edges connecting one to the other. Note: A simple graph has no loops (edges of the form $(v, v)$) or duplicate edges.

2010 Contests, 4

Let $n$ be a positive integer. Find the smallest positive integer $k$ with the property that for any colouring nof the squares of a $2n$ by $k$ chessboard with $n$ colours, there are $2$ columns and $2$ rows such that the $4$ squares in their intersections have the same colour.

2001 China Team Selection Test, 1

Let $k$ be a given integer, $3 < k \leq n$. Consider a graph $G$ with $n$ vertices satisfying the condition: for any two non-adjacent vertices $x$ and $y$ in graph $G$, the sum of their degrees must satisfy $d(x) + d(y) \geq k$. Please answer the following questions and prove your conclusions. (1) Suppose the length of the longest path in graph $G$ is $l$ satisfying the inequality $3 \leq l < k$, does graph $G$ necessarily contain a cycle of length $l+1$? (The length of a path or cycle refers to the number of edges that make up the path or cycle.) (2) For the case where $3 < k \leq n-1$ and graph $G$ is connected, can we determine that the length of the longest path in graph $G$, $l \geq k$? (3) For the case where $3 < k = n-1$, is it necessary for graph $G$ to have a path of length $n-1$ (i.e., a Hamiltonian path)?

1987 IMO Longlists, 41

Let $n$ points be given arbitrarily in the plane, no three of them collinear. Let us draw segments between pairs of these points. What is the minimum number of segments that can be colored red in such a way that among any four points, three of them are connected by segments that form a red triangle?

1947 Kurschak Competition, 2

Show that any graph with $6$ points has a triangle or three points which are not joined to each other.

2010 Contests, 3

Given an integer $n\ge 2$, given $n+1$ distinct points $X_0,X_1,\ldots,X_n$ in the plane, and a positive real number $A$, show that the number of triangles $X_0X_iX_j$ of area $A$ does not exceed $4n\sqrt n$.

STEMS 2023 Math Cat A, 2

Given a complete bipartite graph on $n,n$ vertices (call this $K_{n,n}$), we colour all its edges with $2$ colours , red and blue . What is the least value of $n$ such that for any colouring of the edges of the graph , there will exist at least one monochromatic $4$ cycle ?

2020 Romanian Master of Mathematics, 3

Let $n\ge 3$ be an integer. In a country there are $n$ airports and $n$ airlines operating two-way flights. For each airline, there is an odd integer $m\ge 3$, and $m$ distinct airports $c_1, \dots, c_m$, where the flights offered by the airline are exactly those between the following pairs of airports: $c_1$ and $c_2$; $c_2$ and $c_3$; $\dots$ ; $c_{m-1}$ and $c_m$; $c_m$ and $c_1$. Prove that there is a closed route consisting of an odd number of flights where no two flights are operated by the same airline.

1997 Miklós Schweitzer, 1

Tags: graph theory
Define a class of graphs $G_k$ for each positive integer k as follows. A graph G = ( V , E ) is an element of $G_k$ if and only if there exists an edge coloring $\psi: E\to [ k ] = \{1,2, ..., k\}$ such that for all vertex coloring $\phi: V\to [ k ]$ there exist an edge e = { x , y } such that $\phi ( x ) = \phi( y ) = \psi( e )$. Prove that there exist $c_1< c_2$ positive constants with the following two properties: (i) each graph in $G_k$ has at least $c_1 k^2$ vertices; (ii) there is a graph in $G_k$ which has at most $c_2 k^2$ vertices.

2016 JBMO TST - Turkey, 8

Let $G$ be a simple connected graph with $2016$ vertices and $k$ edges. We want to choose a set of vertices where there is no edge between them and delete all these chosen vertices (we delete both the vertices and all edges of these vertices) such that the remaining graph becomes unconnected. If we can do this task no matter how these $k$ edges are arranged (by making the graph connected), find the maximal value of $k$.

KoMaL A Problems 2020/2021, A. 784

Let $n,s,$ and $t$ be positive integers and $0<\lambda<1.$ A simple graph on $n$ vertices with at least $\lambda n^2$ edges is given. We say that $(x_1,\ldots,x_s,y_1,\ldots,y_t)$ is a [i]good intersection[/i] if letters $x_i$ and $y_j$ denote not necessarily distinct vertices and every $x_iy_j$ is an edge of the graph $(1\leq i\leq s,$ $1\leq j\leq t).$ Prove that the number of good insertions is at least $\lambda^{st}n^{s+t}.$ [i]Proposed by Kada Williams, Cambridge[/i]

2017 Vietnamese Southern Summer School contest, Problem 4

In a summer school, there are $n>4$ students. It is known that, among these students, i. If two ones are friends, then they don't have any common friends. ii If two ones are not friends, then they have exactly two common friends. 1. Prove that $8n-7$ must be a perfect square. 2. Determine the smallest possible value of $n$.

2021 Centroamerican and Caribbean Math Olympiad, 4

There are $2021$ people at a meeting. It is known that one person at the meeting doesn't have any friends there and another person has only one friend there. In addition, it is true that, given any $4$ people, at least $2$ of them are friends. Show that there are $2018$ people at the meeting that are all friends with each other. [i]Note. [/i]If $A$ is friend of $B$ then $B$ is a friend of $A$.

2016 Miklós Schweitzer, 2

Let $K=(V,E)$ be a finite, simple, complete graph. Let $d$ be a positive integer. Let $\phi:E\to \mathbb{R}^d$ be a map from the edge set to Euclidean space, such that the preimage of any point in the range defines a connected graph on the entire vertex set $V$, and the points assigned to the edges of any triangle in $K$ are collinear. Show that the range of $\phi$ is contained in a line.

2021 Iran Team Selection Test, 6

Prove that we can color every subset with $n$ element of a set with $3n$ elements with $8$ colors . In such a way that there are no $3$ subsets $A,B,C$ with the same color where : $$|A \cap B| \le 1,|A \cap C| \le 1,|B \cap C| \le 1$$ Proposed by [i]Morteza Saghafian[/i] and [i]Amir Jafari[/i]

2021 Iran MO (3rd Round), 1

Let $S$ be an infinite set of positive integers, such that there exist four pairwise distinct $a,b,c,d \in S$ with $\gcd(a,b) \neq \gcd(c,d)$. Prove that there exist three pairwise distinct $x,y,z \in S$ such that $\gcd(x,y)=\gcd(y,z) \neq \gcd(z,x)$.

2016 Nordic, 4

King George has decided to connect the $1680$ islands in his kingdom by bridges. Unfortunately the rebel movement will destroy two bridges after all the bridges have been built, but not two bridges from the same island. What is the minimal number of bridges the King has to build in order to make sure that it is still possible to travel by bridges between any two of the $1680$ islands after the rebel movement has destroyed two bridges?

1998 AIME Problems, 15

Tags: graph theory
Define a domino to be an ordered pair of distinct positive integers. A proper sequence of dominos is a list of distinct dominos in which the first coordinate of each pair after the first equals the second coordinate of the immediately preceding pair, and in which $(i,j)$ and $(j,i)$ do not both appear for any $i$ and $j.$ Let $D_{40}$ be the set of all dominos whose coordinates are no larger than 40. Find the length of the longest proper sequence of dominos that can be formed using the dominos of $D_{40}.$

2021 Junior Macedonian Mathematical Olympiad, Problem 1

At this year's Olympiad, some of the students are friends (friendship is symmetric), however there are also students which are not friends. No matter how the students are partitioned in two contest halls, there are always two friends in different halls. Let $A$ be a fixed student. Show that there exist students $B$ and $C$ such that there are exactly two friendships in the group $\{ A,B,C \}$. [i]Authored by Mirko Petrushevski[/i]

2015 Saint Petersburg Mathematical Olympiad, 6

There are $10^{2015}$ planets in an Intergalactic empire. Every two planets are connected by a two-way space line served by one of $2015$ travel companies. The Emperor would like to close $k$ of these companies such that it is still possible to reach any planet from any other planet. Find the maximum value of $k$ for which this is always possible. (D. Karpov)

2015 German National Olympiad, 3

To prepare a stay abroad, students meet at a workshop including an excursion. To promote interaction between the students, they are to be distributed to two busses such that not too many of the students in the same bus know each other. Every student knows all those who know her. The number of such pairwise acquaintances is $k$. Prove that it is possible to distribute the students such that the number of pairwise acquaintances in each bus is at most $\frac{k}{3}$.

2024 Portugal MO, 5

In a sport competition, there are teams of two different countries, with $5$ teams in each country. Each team plays against two teams from each country, including the one itself belongs to, one game at home, one away. How many different ways can one choose the matches in this competition?

2021 China Team Selection Test, 6

Let $n(\ge 2)$ be an integer. $2n^2$ contestants participate in a Chinese chess competition, where any two contestant play exactly once. There may be draws. It is known that (1)If A wins B and B wins C, then A wins C. (2)there are at most $\frac{n^3}{16}$ draws. Proof that it is possible to choose $n^2$ contestants and label them $P_{ij}(1\le i,j\le n)$, so that for any $i,j,i',j'\in \{1,2,...,n\}$, if $i<i'$, then $P_{ij}$ wins $P_{i'j'}$.