This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 801

1986 IMO Longlists, 36

Given a finite set of points in the plane, each with integer coordinates, is it always possible to color the points red or white so that for any straight line $L$ parallel to one of the coordinate axes the difference (in absolute value) between the numbers of white and red points on $L$ is not greater than $1$?

1993 China Team Selection Test, 3

A graph $G=(V,E)$ is given. If at least $n$ colors are required to paints its vertices so that between any two same colored vertices no edge is connected, then call this graph ''$n-$colored''. Prove that for any $n \in \mathbb{N}$, there is a $n-$colored graph without triangles.

2012 Iran Team Selection Test, 1

Is it possible to put $\binom{n}{2}$ consecutive natural numbers on the edges of a complete graph with $n$ vertices in a way that for every path (or cycle) of length $3$ where the numbers $a,b$ and $c$ are written on its edges (edge $b$ is between edges $c$ and $a$), $b$ is divisible by the greatest common divisor of the numbers $a$ and $c$? [i]Proposed by Morteza Saghafian[/i]

2017 Turkey MO (2nd round), 6

Finite number of $2017$ units long sticks are fixed on a plate. Each stick has a bead that can slide up and down on it. Beads can only stand on integer heights $( 1, 2, 3,..., 2017 )$. Some of the bead pairs are connected with elastic bands. $The$ $young$ $ant$ can go to every bead, starting from any bead by using the elastic bands. $The$ $old$ $ant$ can use an elastic band if the difference in height of the beads which are connected by the band, is smaller than or equal to $1$. If the heights of the beads which are connected to each other are different, we call it $valid$ $situation$. If there exists at least one $valid$ $situation$, prove that we can create a $valid$ $situation$, by arranging the heights of the beads, in which $the$ $old$ $ant$ can go to every bead, starting from any bead.

1992 IMO, 3

Consider $9$ points in space, no four of which are coplanar. Each pair of points is joined by an edge (that is, a line segment) and each edge is either colored blue or red or left uncolored. Find the smallest value of $\,n\,$ such that whenever exactly $\,n\,$ edges are colored, the set of colored edges necessarily contains a triangle all of whose edges have the same color.

The Golden Digits 2024, P2

Tags: graph theory
Flavian and Pavel play a game. Starting with Flavian, they take turns eliminating exactly one edge from a complete graph with $2024$ vertices. The first player to make a move that leaves no cycles loses. Determine who has a winning strategy. [i]Proposed by Pavel Ciurea[/i]

2018 239 Open Mathematical Olympiad, 10-11.8

Graph $G$ becomes planar when any vertex is removed. Prove that its vertices can be properly colored with 5 colors. (Using the four-color theorem without proof is not allowed!) [i]Proposed by D. Karpov[/i]

2015 Iran Team Selection Test, 5

Let $A$ be a subset of the edges of an $n\times n $ table. Let $V(A)$ be the set of vertices from the table which are connected to at least on edge from $A$ and $j(A)$ be the number of the connected components of graph $G$ which it's vertices are the set $V(A)$ and it's edges are the set $A$. Prove that for every natural number $l$: $$\frac{l}{2}\leq min_{|A|\geq l}(|V(A)|-j(A)) \leq \frac{l}{2}+\sqrt{\frac{l}{2}}+1$$

2022 China Second Round A2, 3

$S=\{1,2,...,N\}$. $A_1,A_2,A_3,A_4\subseteq S$, each having cardinality $500$. $\forall x,y\in S$, $\exists i\in\{1,2,3,4\}$, $x,y\in A_i$. Determine the maximal value of $N$.

2017 Harvard-MIT Mathematics Tournament, 6

Let $r$ be a positive integer. Show that if a graph $G$ has no cycles of length at most $2r$, then it has at most $|V|^{2016}$ cycles of length exactly $2016r$, where $|V|$ denotes the number of vertices in the graph $G$.

2024 Turkey EGMO TST, 3

Initially, all edges of the $K_{2024}$ are painted with $13$ different colors. If there exist $k$ colors such that the subgraph constructed by the edges which are colored with these $k$ colors is connected no matter how the initial coloring was, find the minimum value of $k$.

2018 USA TSTST, 2

In the nation of Onewaynia, certain pairs of cities are connected by one-way roads. Every road connects exactly two cities (roads are allowed to cross each other, e.g., via bridges), and each pair of cities has at most one road between them. Moreover, every city has exactly two roads leaving it and exactly two roads entering it. We wish to close half the roads of Onewaynia in such a way that every city has exactly one road leaving it and exactly one road entering it. Show that the number of ways to do so is a power of $2$ greater than $1$ (i.e.\ of the form $2^n$ for some integer $n \ge 1$). [i]Victor Wang[/i]

2001 China Team Selection Test, 2

A badminton club consists of $2n$ members who are n couples. The club plans to arrange a round of mixed doubles matches where spouses neither play together nor against each other. Requirements are: $\cdot$ Each pair of members of the same gender meets exactly once as opponents in a mixed doubles match. $\cdot$ Any two members of the opposite gender who are not spouses meet exactly once as partners and also as opponents in a mixed doubles match. Given that $(n,6)=1$, can you arrange a round of mixed doubles matches that meets the above specifications and requirements?

2005 IMO Shortlist, 3

Consider a $m\times n$ rectangular board consisting of $mn$ unit squares. Two of its unit squares are called [i]adjacent[/i] if they have a common edge, and a [i]path[/i] is a sequence of unit squares in which any two consecutive squares are adjacent. Two parths are called [i]non-intersecting[/i] if they don't share any common squares. Each unit square of the rectangular board can be colored black or white. We speak of a [i]coloring[/i] of the board if all its $mn$ unit squares are colored. Let $N$ be the number of colorings of the board such that there exists at least one black path from the left edge of the board to its right edge. Let $M$ be the number of colorings of the board for which there exist at least two non-intersecting black paths from the left edge of the board to its right edge. Prove that $N^{2}\geq M\cdot 2^{mn}$.

2022 Nordic, 2

In Wonderland, the towns are connected by roads, and whenever there is a direct road between two towns there is also a route between these two towns that does not use that road. (There is at most one direct road between any two towns.) The Queen of Hearts ordered the Spades to provide a list of all ”even” subsystems of the system of roads, that is, systems formed by subsets of the set of roads, where each town is connected to an even number of roads (possibly none). For each such subsystem they should list its roads. If there are totally $n$ roads in Wonderland and $x$ subsystems on the Spades’ list, what is the number of roads on their list when each road is counted as many times as it is listed?

2019 ELMO Shortlist, C2

Adithya and Bill are playing a game on a connected graph with $n > 2$ vertices, two of which are labeled $A$ and $B$, so that $A$ and $B$ are distinct and non-adjacent and known to both players. Adithya starts on vertex $A$ and Bill starts on $B$. Each turn, both players move simultaneously: Bill moves to an adjacent vertex, while Adithya may either move to an adjacent vertex or stay at his current vertex. Adithya loses if he is on the same vertex as Bill, and wins if he reaches $B$ alone. Adithya cannot see where Bill is, but Bill can see where Adithya is. Given that Adithya has a winning strategy, what is the maximum possible number of edges the graph may have? (Your answer may be in terms of $n$.) [i]Proposed by Steven Liu[/i]

2025 Israel TST, P3

Let \( n \) be a positive integer. A graph on \( 2n - 1 \) vertices is given such that the size of the largest clique in the graph is \( n \). Prove that there exists a vertex that is present in every clique of size \( n\)

2008 Hong Kong TST, 2

Define a $ k$-[i]clique[/i] to be a set of $ k$ people such that every pair of them are acquainted with each other. At a certain party, every pair of 3-cliques has at least one person in common, and there are no 5-cliques. Prove that there are two or fewer people at the party whose departure leaves no 3-clique remaining.

2013 Balkan MO Shortlist, C1

In a mathematical competition, some competitors are friends; friendship is mutual, that is, when $A$ is a friend of $B$, then $B$ is also a friend of $A$. We say that $n \geq 3$ different competitors $A_1, A_2, \ldots, A_n$ form a [i]weakly-friendly cycle [/i]if $A_i$ is not a friend of $A_{i+1}$ for $1 \leq i \leq n$ (where $A_{n+1} = A_1$), and there are no other pairs of non-friends among the components of the cycle. The following property is satisfied: "for every competitor $C$ and every weakly-friendly cycle $\mathcal{S}$ of competitors not including $C$, the set of competitors $D$ in $\mathcal{S}$ which are not friends of $C$ has at most one element" Prove that all competitors of this mathematical competition can be arranged into three rooms, such that every two competitors in the same room are friends. ([i]Serbia[/i])

2024 Indonesia TST, 3

Let $n\geqslant 2$ be a positive integer. Paul has a $1\times n^2$ rectangular strip consisting of $n^2$ unit squares, where the $i^{\text{th}}$ square is labelled with $i$ for all $1\leqslant i\leqslant n^2$. He wishes to cut the strip into several pieces, where each piece consists of a number of consecutive unit squares, and then [i]translate[/i] (without rotating or flipping) the pieces to obtain an $n\times n$ square satisfying the following property: if the unit square in the $i^{\text{th}}$ row and $j^{\text{th}}$ column is labelled with $a_{ij}$, then $a_{ij}-(i+j-1)$ is divisible by $n$. Determine the smallest number of pieces Paul needs to make in order to accomplish this.

1989 IMO Shortlist, 17

Given seven points in the plane, some of them are connected by segments such that: [b](i)[/b] among any three of the given points, two are connected by a segment; [b](ii)[/b] the number of segments is minimal. How many segments does a figure satisfying [b](i)[/b] and [b](ii)[/b] have? Give an example of such a figure.

2000 Moldova National Olympiad, Problem 5

An airline offer $2000$ two-way routes connecting $64$ towns in a country. Show that it is possible to reach any town from any other town using the offered routes.

2006 Princeton University Math Competition, 10

What is the largest possible number of vertices one can have in a graph that satisfies the following conditions: each vertex is connected to exactly $3$ other vertices, and there always exists a path of length less than or equal to $2$ between any two vertices?

2022 Estonia Team Selection Test, 6

The kingdom of Anisotropy consists of $n$ cities. For every two cities there exists exactly one direct one-way road between them. We say that a [i]path from $X$ to $Y$[/i] is a sequence of roads such that one can move from $X$ to $Y$ along this sequence without returning to an already visited city. A collection of paths is called [i]diverse[/i] if no road belongs to two or more paths in the collection. Let $A$ and $B$ be two distinct cities in Anisotropy. Let $N_{AB}$ denote the maximal number of paths in a diverse collection of paths from $A$ to $B$. Similarly, let $N_{BA}$ denote the maximal number of paths in a diverse collection of paths from $B$ to $A$. Prove that the equality $N_{AB} = N_{BA}$ holds if and only if the number of roads going out from $A$ is the same as the number of roads going out from $B$. [i]Proposed by Warut Suksompong, Thailand[/i]

2007 Greece Junior Math Olympiad, 4

Each of the $50$ students in a class sent greeting cards to $25$ of the others. Prove that there exist two students who greeted each other.