Found problems: 801
2007 USAMO, 4
An [i]animal[/i] with $n$ [i]cells[/i] is a connected figure consisting of $n$ equal-sized cells[1].
A [i]dinosaur[/i] is an animal with at least $2007$ cells. It is said to be [i]primitive[/i] it its cells cannot be partitioned into two or more dinosaurs. Find with proof the maximum number of cells in a primitive dinosaur.
(1) Animals are also called [i]polyominoes[/i]. They can be defined inductively. Two cells are [i]adjacent[/i] if they share a complete edge. A single cell is an animal, and given an animal with $n$ cells, one with $n+1$ cells is obtained by adjoining a new cell by making it adjacent to one or more existing cells.
2005 IMO Shortlist, 2
This ISL 2005 problem has not been used in any TST I know. A pity, since it is a nice problem, but in its shortlist formulation, it is absolutely incomprehensible. Here is a mathematical restatement of the problem:
Let $k$ be a nonnegative integer.
A forest consists of rooted (i. e. oriented) trees. Each vertex of the forest is either a leaf or has two successors. A vertex $v$ is called an [i]extended successor[/i] of a vertex $u$ if there is a chain of vertices $u_{0}=u$, $u_{1}$, $u_{2}$, ..., $u_{t-1}$, $u_{t}=v$ with $t>0$ such that the vertex $u_{i+1}$ is a successor of the vertex $u_{i}$ for every integer $i$ with $0\leq i\leq t-1$. A vertex is called [i]dynastic[/i] if it has two successors and each of these successors has at least $k$ extended successors.
Prove that if the forest has $n$ vertices, then there are at most $\frac{n}{k+2}$ dynastic vertices.
1961 All-Soviet Union Olympiad, 3
Consider $n$ points, some of them connected by segments. These segments do not intersect each other. You can reach every point from any every other one in exactly one way by traveling along the segments. Prove that the total number of segments is $n-1$.
2013 IMO Shortlist, C6
In some country several pairs of cities are connected by direct two-way flights. It is possible to go from any city to any other by a sequence of flights. The distance between two cities is defined to be the least possible numbers of flights required to go from one of them to the other. It is known that for any city there are at most $100$ cities at distance exactly three from it. Prove that there is no city such that more than $2550$ other cities have distance exactly four from it.
2008 Bulgarian Autumn Math Competition, Problem 10.4
There are $3\leq n\leq 25$ passengers in a bus some of which are friends. Every passenger has exactly $k$ friends among the passengers, no two friends have a common friend and every two people, who are not friends have a common friend. Find $n$.
2017 EGMO, 3
Let $n\geq1$ be an integer and let $t_1<t_2<\dots<t_n$ be positive integers. In a group of $t_n+1$ people, some games of chess are played. Two people can play each other at most once. Prove that it is possible for the following two conditions to hold at the same time:
(i) The number of games played by each person is one of $t_1,t_2,\dots,t_n$.
(ii) For every $i$ with $1\leq i\leq n$, there is someone who has played exactly $t_i$ games of chess.
2014 USA TSTST, 5
Find the maximum number $E$ such that the following holds: there is an edge-colored graph with 60 vertices and $E$ edges, with each edge colored either red or blue, such that in that coloring, there is no monochromatic cycles of length 3 and no monochromatic cycles of length 5.
2025 India STEMS Category C, 2
Alice and Bob play a game on a connected graph with $2n$ vertices, where $n\in \mathbb{N}$ and $n>1$.. Alice and Bob have tokens named A and B respectively. They alternate their turns with Alice going first. Alice gets to decide the starting positions of A and B. Every move, the player with the turn moves their token to an adjacent vertex. Bob's goal is to catch Alice, and Alice's goal is to prevent this. Note that positions of A, B are visible to both Alice and Bob at every moment.
Provided they both play optimally, what is the maximum possible number of edges in the graph if Alice is able to evade Bob indefinitely?
[i]Proposed by Shashank Ingalagavi and Vighnesh Sangle[/i]
2011 Indonesia MO, 4
An island has $10$ cities, where some of the possible pairs of cities are connected by roads. A [i]tour route[/i] is a route starting from a city, passing exactly eight out of the other nine cities exactly once each, and returning to the starting city. (In other words, it is a loop that passes only nine cities instead of all ten cities.) For each city, there exists a tour route that doesn't pass the given city. Find the minimum number of roads on the island.
2008 Tuymaada Olympiad, 5
Every street in the city of Hamiltonville connects two squares, and every square may be reached by streets from every other. The governor discovered that if he closed all squares of any route not passing any square more than once, every remained square would be reachable from each other. Prove that there exists a circular route passing every square of the city exactly once.
[i]Author: S. Berlov[/i]
2016 Tuymaada Olympiad, 8
The flights map of air company $K_{r,r}$ presents several cities. Some cities are connected by a direct (two way) flight, the total number of flights is m. One must choose two non-intersecting groups of r cities each so that every city of the first group is connected by a flight with every city of the second group. Prove that number of possible choices does not exceed $2*m^r$ .
2015 Miklos Schweitzer, 3
Let ${A}$ be a finite set and ${\rightarrow}$ be a binary relation on it such that for any ${a,b,c \in A}$, if ${a\neq b}, {a \rightarrow c}$ and ${b \rightarrow c}$ then either ${a \rightarrow b}$ or ${b \rightarrow a}$ (or possibly both). Let ${B,\,B \subset A}$ be minimal with the property: for any ${a \in A \setminus B}$ there exists ${b \in B}$, such that either ${a \rightarrow b}$ or ${b \rightarrow a}$ (or possibly both).
Supposing that ${A}$ has at most ${k}$ elements that are pairwise not in relation ${\rightarrow}$, prove that ${B}$ has at most ${k}$ elements.
1956 Putnam, B5
Show that a graph with 2n points and $n^2 + 1$ edges necessarily contains a 3-cycle, but that we can find a graph with 2n points and $n^2$ edges without a 3-cycle.
please prove it without induction .
2001 Korea Junior Math Olympiad, 4
Some $n \geq 3$ cities are connected with railways, so that you can travel from one city to every other, not necessarily directly. However, the railways are structured in such a way that there is only one way to get from one city to another, assuming you don't pass through the same city again. Let $A$ be the set of these cities and railways. Show that there exists a Subset of $A$, let's say $C$, such that
(1) $C$ has at least $[(n+1)/2]$ cities as its element.
(2) No two elements of $C$ are directly connected with railways.
2013 Danube Mathematical Competition, 3
Show that, for every integer $r \ge 2$, there exists an $r$-chromatic simple graph (no loops, nor multiple edges) which has no cycle of less than $6$ edges
2006 Canada National Olympiad, 4
Consider a round-robin tournament with $2n+1$ teams, where each team plays each other team exactly one. We say that three teams $X,Y$ and $Z$, form a [i]cycle triplet [/i] if $X$ beats $Y$, $Y$ beats $Z$ and $Z$ beats $X$. There are no ties.
a)Determine the minimum number of cycle triplets possible.
b)Determine the maximum number of cycle triplets possible.
2010 Indonesia TST, 2
Let $T$ be a tree with$ n$ vertices. Choose a positive integer $k$ where $1 \le k \le n$ such that $S_k$ is a subset with $k$ elements from the vertices in $T$. For all $S \in S_k$, define $c(S)$ to be the number of component of graph from $S$ if we erase all vertices and edges in $T$, except all vertices and edges in $S$. Determine $\sum_{S\in S_k} c(S)$, expressed in terms of $n$ and $k$.
2019 239 Open Mathematical Olympiad, 8
Given a natural number $k> 1$. Prove that if through any edge of the graph $G$ passes less than $[e(k-1)! - 1]$ simple cycles, then the vertices of this graph can be colored with $k$ colors in the correct way.
2015 European Mathematical Cup, 4
A group of mathematicians is attending a conference. We say that a mathematician is $k-$[i]content[/i] if he is in a room with at least $k$ people he admires or if he is admired by at least $k$ other people in the room. It is known that when all participants are in a same room then they are all at least $3k + 1$-content. Prove that you can assign everyone into one of $2$ rooms in a way that everyone is at least $k$-content in his room and neither room is empty. [i]Admiration is not necessarily mutual and no one admires himself.[/i]
[i]Matija Bucić[/i]
1978 IMO Shortlist, 10
An international society has its members from six different countries. The list of members contain $1978$ names, numbered $1, 2, \dots, 1978$. Prove that there is at least one member whose number is the sum of the numbers of two members from his own country, or twice as large as the number of one member from his own country.
1990 IMO Longlists, 13
Six cities $A, B, C, D, E$, and $F$ are located on the vertices of a regular hexagon in that order. $G$ is the center of the hexagon. The sides of the hexagon are the roads connecting these cities. Further more, there are roads connecting cities $B, C, E, F$ and $G$, respectively. Because of raining, one or more roads maybe destroyed. The probability of the road keeping undestroyed between two consecutive cities is $p$. Determine the probability of the road between cities $A$ and $D$ is undestroyed.
2019 Romanian Master of Mathematics, 6
Find all pairs of integers $(c, d)$, both greater than 1, such that the following holds:
For any monic polynomial $Q$ of degree $d$ with integer coefficients and for any prime $p > c(2c+1)$, there exists a set $S$ of at most $\big(\tfrac{2c-1}{2c+1}\big)p$ integers, such that
\[\bigcup_{s \in S} \{s,\; Q(s),\; Q(Q(s)),\; Q(Q(Q(s))),\; \dots\}\]
contains a complete residue system modulo $p$ (i.e., intersects with every residue class modulo $p$).
2015 South East Mathematical Olympiad, 3
Can you make $2015$ positive integers $1,2, \ldots , 2015$ to be a certain permutation which can be ordered in the circle such that the sum of any two adjacent numbers is a multiple of $4$ or a multiple of $7$?
2019 Turkey Team SeIection Test, 6
$k$ is a positive integer,
$R_{n}={-k, -(k-1),..., -1, 1,..., k-1, k}$ for $n=2k$
$R_{n}={-k, -(k-1),..., -1, 0, 1,..., k-1, k}$ for $n=2k+1$.
A mechanism consists of some marbles and white/red ropes that connects some marble pairs. If each one of the marbles are written on some numbers from $R_{n}$ with the property that any two connected marbles have different numbers on them, we call it [i]nice labeling[/i]. If each one of the marbles are written on some numbers from $R_{n}$ with the properties that any two connected marbles with a white rope have different numbers on them and any two connected marbles with a red rope have two numbers with sum not equal to $0$, we call it [i]precise labeling[/i].
$n\geq{3}$, if every mechanism that is labeled [i]nicely[/i] with $R_{n}$, could be labeled [i]precisely[/i] with $R_{m}$, what is the minimal value of $m$?
2014 Saudi Arabia IMO TST, 2
Define a [i]domino[/i] to be an ordered pair of [i]distinct[/i] positive integers. A [i]proper sequence[/i] of dominoes is a list of distinct dominoes in which the first coordinate of each pair after the first equals the second coordinate of the immediately preceding pair, and in which $(i, j)$ and $(j, i)$ do not [i]both[/i] appear for any $i$ and $j$. Let $D_n$ be the set of all dominoes whose coordinates are no larger than $n$. Find the length of the longest proper sequence of dominoes that can be formed using the dominoes of $D_n$.