Found problems: 3
2003 IMO, 1
Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.
2021 Iran RMM TST, 3
In a $3$ by $3$ table, by a $k$-worm, we mean a path of different cells $(S_1,S_2,...,S_k)$ such that each two consecutive cells have one side in common. The $k$-worm at each steep can go one cell forward and turn to the $(S,S_1,...,S_{k-1})$ if $S$ is an unfilled cell which is adjacent (has one side in common) with $S_1$. Find the maximum number of $k$ such that there is a $k$-worm $(S_1,...,S_k)$ such that after finitly many steps can be turned to $(S_k,...,S_1)$.
2003 IMO Shortlist, 1
Let $A$ be a $101$-element subset of the set $S=\{1,2,\ldots,1000000\}$. Prove that there exist numbers $t_1$, $t_2, \ldots, t_{100}$ in $S$ such that the sets \[ A_j=\{x+t_j\mid x\in A\},\qquad j=1,2,\ldots,100 \] are pairwise disjoint.