This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 7

1990 IMO Shortlist, 24

Let $ w, x, y, z$ are non-negative reals such that $ wx \plus{} xy \plus{} yz \plus{} zw \equal{} 1$. Show that $ \frac {w^3}{x \plus{} y \plus{} z} \plus{} \frac {x^3}{w \plus{} y \plus{} z} \plus{} \frac {y^3}{w \plus{} x \plus{} z} \plus{} \frac {z^3}{w \plus{} x \plus{} y}\geq \frac {1}{3}$.

2025 Kosovo National Mathematical Olympiad`, P2

Find the smallest natural number $k$ such that the system of equations $$x+y+z=x^2+y^2+z^2=\dots=x^k+y^k+z^k $$ has only one solution for positive real numbers $x$, $y$ and $z$.

2001 Czech-Polish-Slovak Match, 1

Let $n\ge2$ be a natural number, and $a_i$ be positive numbers, where $i=1,2,\cdots,n.$ Show that \[\left(a_1^3+1\right)\left(a_2^3+1\right)\cdots\left(a_n^3+1\right) \geq \left(a_1^2a_2+1\right)\left(a_2^2a_3+1\right)\cdots\left(a_n^2a_1+1\right)\]

2020 DMO Stage 1, 1.

[b]Q.[/b] Find the minimum value of the expression for $x,y,z\in \mathbb{R}^{+}$ $$\sum_{\text{cyc}}\frac{(x+1)^{4}+2(y+1)^{6}-(y+1)^{4}}{(y+1)^{6}}$$ [i]Proposed by Aritra12[/i]

2014 Mexico National Olympiad, 5

Let $a, b, c$ be positive reals such that $a + b + c = 3$. Prove: \[ \frac{a^2}{a + \sqrt[3]{bc}} + \frac{b^2}{b + \sqrt[3]{ca}} + \frac{c^2}{c + \sqrt[3]{ab}} \geq \frac{3}{2} \] And determine when equality holds.

2015 Postal Coaching, Problem 3

Let $a,b,c \in \mathbb{R^+}$ such that $abc=1$. Prove that $$\sum_{a,b,c} \sqrt{\frac{a}{a+8}} \ge 1$$

1990 IMO Longlists, 88

Let $ w, x, y, z$ are non-negative reals such that $ wx \plus{} xy \plus{} yz \plus{} zw \equal{} 1$. Show that $ \frac {w^3}{x \plus{} y \plus{} z} \plus{} \frac {x^3}{w \plus{} y \plus{} z} \plus{} \frac {y^3}{w \plus{} x \plus{} z} \plus{} \frac {z^3}{w \plus{} x \plus{} y}\geq \frac {1}{3}$.