This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2025 Bulgarian Winter Tournament, 11.4

Let $A$ be a set of $2025$ non-negative integers and $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ be a function with the following two properties: 1) For every two distinct positive integers $x,y$ there exists $a\in A$, such that $x-y$ divides $f(x+a) - f(y+a)$. 2) For every positive integer $N$ there exists a positive integer $t$ such that $f(x) \neq f(y)$ whenever $x,y \in [t, t+N]$ are distinct. Prove that there are infinitely many primes $p$ such that $p$ divides $f(x)$ for some positive integer $x$.