This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 108

1989 Nordic, 1

Find a polynomial $P$ of lowest possible degree such that (a) $P$ has integer coefficients, (b) all roots of $P$ are integers, (c) $P(0) = -1$, (d) $P(3) = 128$.

2014 IMO Shortlist, N6

Let $a_1 < a_2 < \cdots <a_n$ be pairwise coprime positive integers with $a_1$ being prime and $a_1 \ge n + 2$. On the segment $I = [0, a_1 a_2 \cdots a_n ]$ of the real line, mark all integers that are divisible by at least one of the numbers $a_1 , \ldots , a_n$ . These points split $I$ into a number of smaller segments. Prove that the sum of the squares of the lengths of these segments is divisible by $a_1$. [i]Proposed by Serbia[/i]

1998 ITAMO, 5

Suppose $a_1,a_2,a_3,a_4$ are distinct integers and $P(x)$ is a polynomial with integer coefficients satisfying $P(a_1) = P(a_2) = P(a_3) = P(a_4) = 1$. (a) Prove that there is no integer $n$ such that $P(n) = 12$. (b) Do there exist such a polynomial and $a_n$ integer $n$ such that $P(n) = 1998$?

2020 Jozsef Wildt International Math Competition, W27

Let $$P(x)=a_0x^n+a_1x^{n-1}+\ldots+a_n$$ where $a_0,\ldots,a_n$ are integers. Show that if $P$ takes the value $2020$ for four distinct integral values of $x$, then $P$ cannot take the value $2001$ for any integral value of $x$. [i]Proposed by Ángel Plaza[/i]

2019 ISI Entrance Examination, 7

Let $f$ be a polynomial with integer coefficients. Define $$a_1 = f(0)~,~a_2 = f(a_1) = f(f(0))~,$$ and $~a_n = f(a_{n-1})$ for $n \geqslant 3$. If there exists a natural number $k \geqslant 3$ such that $a_k = 0$, then prove that either $a_1=0$ or $a_2=0$.

1989 Romania Team Selection Test, 2

Find all monic polynomials $P(x),Q(x)$ with integer coefficients such that $Q(0) =0$ and $P(Q(x)) = (x-1)(x-2)...(x-15)$.

2018 Iran Team Selection Test, 3

$n>1$ and distinct positive integers $a_1,a_2,\ldots,a_{n+1}$ are  given. Does there exist a polynomial $p(x)\in\Bbb{Z}[x]$ of degree  $\le n$ that satisfies the following conditions? a. $\forall_{1\le i < j\le n+1}: \gcd(p(a_i),p(a_j))>1 $ b. $\forall_{1\le i < j < k\le n+1}: \gcd(p(a_i),p(a_j),p(a_k))=1 $ [i]Proposed by Mojtaba Zare[/i]

2021 Korea Winter Program Practice Test, 4

Find all $f(x)\in \mathbb Z (x)$ that satisfies the following condition, with the lowest degree. [b]Condition[/b]: There exists $g(x),h(x)\in \mathbb Z (x)$ such that $$f(x)^4+2f(x)+2=(x^4+2x^2+2)g(x)+3h(x)$$.

2000 Saint Petersburg Mathematical Olympiad, 11.4

Let $P(x)=x^{2000}-x^{1000}+1$. Prove that there don't exist 8002 distinct positive integers $a_1,\dots,a_{8002}$ such that $a_ia_ja_k|P(a_i)P(a_j)P(a_k)$ for all $i\neq j\neq k$. [I]Proposed by A. Baranov[/i]

1992 Romania Team Selection Test, 6

Let $m,n$ be positive integers and $p$ be a prime number. Show that if $\frac{7^m + p \cdot 2^n}{7^m - p \cdot 2^n}$ is an integer, then it is a prime number.

2021 Estonia Team Selection Test, 2

Find all polynomials $P(x)$ with integral coefficients whose values at points $x = 1, 2, . . . , 2021$ are numbers $1, 2, . . . , 2021$ in some order.

1939 Moscow Mathematical Olympiad, 049

Let the product of two polynomials of a variable $x$ with integer coefficients be a polynomial with even coefficients not all of which are divisible by $4$. Prove that all the coefficients of one of the polynomials are even and that at least one of the coefficients of the other polynomial is odd.

2019 USA TSTST, 6

Suppose $P$ is a polynomial with integer coefficients such that for every positive integer $n$, the sum of the decimal digits of $|P(n)|$ is not a Fibonacci number. Must $P$ be constant? (A [i]Fibonacci number[/i] is an element of the sequence $F_0, F_1, \dots$ defined recursively by $F_0=0, F_1=1,$ and $F_{k+2} = F_{k+1}+F_k$ for $k\ge 0$.) [i]Nikolai Beluhov[/i]

2015 India Regional MathematicaI Olympiad, 3

Let $P(x)$ be a polynomial whose coefficients are positive integers. If $P(n)$ divides $P(P(n)-2015)$ for every natural number $n$, prove that $P(-2015)=0$. [hide]One additional condition must be given that $P$ is non-constant, which even though is understood.[/hide]

1997 Abels Math Contest (Norwegian MO), 4

Let $p(x)$ be a polynomial with integer coefficients. Suppose that there exist different integers $a$ and $b$ such that $f(a) = b$ and $f(b) = a$. Show that the equation $f(x) = x$ has at most one integer solution.

2017 Saudi Arabia BMO TST, 2

Polynomial P(x) with integer coefficient is called [i]cube-presented[/i] if it can be represented as sum of several cube of polynomials with integer coefficients. Examples: $3x + 3x^2$ is cube-represented because $3x + 3x^2 = (x + 1)^3 +(-x)^3 + (-1)^3$. a) Is $3x^2$ a cube-represented polynomial? b). How many quadratic polynomial P(x) with integer coefficients belong to the set $\{1,2, 3, ...,2017\}$ which is cube-represented?

2016 All-Russian Olympiad, 5

Let $n$ be a positive integer and let $k_0,k_1, \dots,k_{2n}$ be nonzero integers such that $k_0+k_1 +\dots+k_{2n}\neq 0$. Is it always possible to a permutation $(a_0,a_1,\dots,a_{2n})$ of $(k_0,k_1,\dots,k_{2n})$ so that the equation \begin{align*} a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+\dots+a_0=0 \end{align*} has not integer roots?

2022 Turkey Team Selection Test, 6

For a polynomial $P(x)$ with integer coefficients and a prime $p$, if there is no $n \in \mathbb{Z}$ such that $p|P(n)$, we say that polynomial $P$ [i]excludes[/i] $p$. Is there a polynomial with integer coefficients such that having degree of 5, excluding exactly one prime and not having a rational root?

2021 Estonia Team Selection Test, 2

Find all polynomials $P(x)$ with integral coefficients whose values at points $x = 1, 2, . . . , 2021$ are numbers $1, 2, . . . , 2021$ in some order.

1995 Korea National Olympiad, Day 2

Let $a,b$ be integers and $p$ be a prime number such that: (i) $p$ is the greatest common divisor of $a$ and $b$; (ii) $p^2$ divides $a$. Prove that the polynomial $x^{n+2}+ax^{n+1}+bx^{n}+a+b$ cannot be decomposed into the product of two polynomials with integer coefficients and degree greater than $1$.

1998 Czech and Slovak Match, 2

A polynomial $P(x)$ of degree $n \ge 5$ with integer coefficients has $n$ distinct integer roots, one of which is $0$. Find all integer roots of the polynomial $P(P(x))$.

VI Soros Olympiad 1999 - 2000 (Russia), 11.6

Let $P(x)$ be a polynomial with integer coefficients. It is known that the number $\sqrt2+\sqrt3$ is its root. Prove that the number $\sqrt2-\sqrt3$ is also its root.

2013 QEDMO 13th or 12th, 10

Let $p$ be a prime number gretater then $3$. What is the number of pairs $(m, n)$ of integers with $0 <m <n <p$, for which the polynomial $x^p + px^n + px^m +1$ is not a product of two non-constant polynomials with integer coefficients can be written?

1970 Swedish Mathematical Competition, 3

A polynomial with integer coefficients takes the value $5$ at five distinct integers. Show that it does not take the value $9$ at any integer.

2022 Federal Competition For Advanced Students, P2, 4

Decide whether for every polynomial $P$ of degree at least $1$, there exist infinitely many primes that divide $P(n)$ for at least one positive integer $n$. [i](Walther Janous)[/i]