This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

1995 Spain Mathematical Olympiad, 4

Given a prime number $p$, find all integer solutions of $p(x+y) = xy$.

1997 Dutch Mathematical Olympiad, 3

a. View the second-degree quadratic equation $x^2+? x +? = 0$ Two players successively put an integer each at the location of a question mark. Show that the second player can always ensure that the quadratic gets two integer solutions. Note: we say that the quadratic also has two integer solutions, even when they are equal (for example if they are both equal to $3$). b.View the third-degree equation $x^3 +? x^2 +? x +? = 0$ Three players successively put an integer each at the location of a question mark. The equation appears to have three integer (possibly again the same) solutions. It is given that two players each put a $3$ in the place of a question mark. What number did the third player put? Determine that number and the place where it is placed and prove that only one number is possible.

2012 Greece JBMO TST, 4

Numbers $x,y,z$ are positive integers and satisfy the equation $x+y+z=2013$. (E) a) Find the number of the triplets $(x,y,z)$ that are solutions of the equation (E). b) Find the number of the solutions of the equation (E) for which $x=y$. c) Find the solution $(x,y,z)$ of the equation (E) for which the product $xyz$ becomes maximum.