This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2012 Centers of Excellency of Suceava, 3

Consider the sequence $ \left( I_n \right)_{n\ge 1} , $ where $ I_n=\int_0^{\pi/4} e^{\sin x\cos x} (\cos x-\sin x)^{2n} (\cos x+\sin x )dx, $ for any natural number $ n. $ [b]a)[/b] Find a relation between any two consecutive terms of $ I_n. $ [b]b)[/b] Calculate $ \lim_{n\to\infty } nI_n. $ [i]c)[/i] Show that $ \sum_{i=1}^{\infty }\frac{1}{(2i-1)!!} =\int_0^{\pi/4} e^{\sin x\cos x} (\cos x+\sin x )dx. $ [i]Cătălin Țigăeru[/i]