This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2016 Korea USCM, 3

Given positive integers $m,n$ and a $m\times n$ matrix $A$ with real entries. (1) Show that matrices $X = I_m + AA^T$ and $Y = I_n + A^T A$ are invertible. ($I_l$ is the $l\times l$ unit matrix.) (2) Evaluate the value of $\text{tr}(X^{-1}) - \text{tr}(Y^{-1})$.