This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2025 Romania National Olympiad, 2

Let $n$ be a positive integer, and $a,b$ be two complex numbers such that $a \neq 1$ and $b^k \neq 1$, for any $k \in \{1,2,\dots ,n\}$. The matrices $A,B \in \mathcal{M}_n(\mathbb{C})$ satisfy the relation $BA=a I_n + bAB$. Prove that $A$ and $B$ are invertible.