This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2023 European Mathematical Cup, 4

Let $f\colon\mathbb{N}\rightarrow\mathbb{N}$ be a function such that for all positive integers $x$ and $y$, the number $f(x)+y$ is a perfect square if and only if $x+f(y)$ is a perfect square. Prove that $f$ is injective. [i]Remark.[/i] A function $f\colon\mathbb{N}\rightarrow\mathbb{N}$ is injective if for all pairs $(x,y)$ of distinct positive integers, $f(x)\neq f(y)$ holds. [i]Ivan Novak[/i]