This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

1988 India National Olympiad, 3

Five men, $ A$, $ B$, $ C$, $ D$, $ E$ are wearing caps of black or white colour without each knowing the colour of his cap. It is known that a man wearing black cap always speaks the truth while the ones wearing white always tell lies. If they make the following statements, find the colour worn by each of them: $ A$ : I see three black caps and one white cap. $ B$ : I see four white caps $ C$ : I see one black cap and three white caps $ D$ : I see your four black caps.

2020/2021 Tournament of Towns, P4

A traveler arrived to an island where 50 natives lived. All the natives stood in a circle and each announced firstly the age of his left neighbour, then the age of his right neighbour. Each native is either a knight who told both numbers correctly or a knave who increased one of the numbers by 1 and decreased the other by 1 (on his choice). Is it always possible after that to establish which of the natives are knights and which are knaves? [i]Alexandr Gribalko[/i]

2019 239 Open Mathematical Olympiad, 4

There are $n>1000$ people at a round table. Some of them are knights who always tell the truth, and the rest are liars who always tell lies. Each of those sitting said the phrase: “among the $20$ people sitting clockwise from where I sit there are as many knights as among the $20$ people seated counterclockwise from where I sit”. For what $n$ could this happen?