This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2015 Romania Team Selection Test, 4

Let $k$ be a positive integer congruent to $1$ modulo $4$ which is not a perfect square and let $a=\frac{1+\sqrt{k}}{2}$. Show that $\{\left \lfloor{a^2n}\right \rfloor-\left \lfloor{a\left \lfloor{an}\right \rfloor}\right \rfloor : n \in \mathbb{N}_{>0}\}=\{1 , 2 , \ldots ,\left \lfloor{a}\right \rfloor\}$.

2015 Romania Team Selection Tests, 4

Let $k$ be a positive integer congruent to $1$ modulo $4$ which is not a perfect square and let $a=\frac{1+\sqrt{k}}{2}$. Show that $\{\left \lfloor{a^2n}\right \rfloor-\left \lfloor{a\left \lfloor{an}\right \rfloor}\right \rfloor : n \in \mathbb{N}_{>0}\}=\{1 , 2 , \ldots ,\left \lfloor{a}\right \rfloor\}$.

2008 Gheorghe Vranceanu, 2

Show that there is a natural number $ n $ that satisfies the following inequalities: $$ \sqrt{3} -\frac{1}{10}<\{ n\sqrt 3\} +\{ (n+1)\sqrt 3 \} <\sqrt 3. $$