This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2002 IMO, 3

Find all pairs of positive integers $m,n\geq3$ for which there exist infinitely many positive integers $a$ such that \[ \frac{a^m+a-1}{a^n+a^2-1} \] is itself an integer. [i]Laurentiu Panaitopol, Romania[/i]

1991 IMO, 2

Let $ \,n > 6\,$ be an integer and $ \,a_{1},a_{2},\cdots ,a_{k}\,$ be all the natural numbers less than $ n$ and relatively prime to $ n$. If \[ a_{2} \minus{} a_{1} \equal{} a_{3} \minus{} a_{2} \equal{} \cdots \equal{} a_{k} \minus{} a_{k \minus{} 1} > 0, \] prove that $ \,n\,$ must be either a prime number or a power of $ \,2$.

1991 IMO Shortlist, 16

Let $ \,n > 6\,$ be an integer and $ \,a_{1},a_{2},\cdots ,a_{k}\,$ be all the natural numbers less than $ n$ and relatively prime to $ n$. If \[ a_{2} \minus{} a_{1} \equal{} a_{3} \minus{} a_{2} \equal{} \cdots \equal{} a_{k} \minus{} a_{k \minus{} 1} > 0, \] prove that $ \,n\,$ must be either a prime number or a power of $ \,2$.

2002 IMO Shortlist, 6

Find all pairs of positive integers $m,n\geq3$ for which there exist infinitely many positive integers $a$ such that \[ \frac{a^m+a-1}{a^n+a^2-1} \] is itself an integer. [i]Laurentiu Panaitopol, Romania[/i]