This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 283

2016 AMC 12/AHSME, 24

There are exactly $77,000$ ordered quadruples $(a,b,c,d)$ such that $\gcd(a,b,c,d)=77$ and $\operatorname{lcm}(a,b,c,d)=n$. What is the smallest possible value of $n$? $\textbf{(A)}\ 13,860 \qquad \textbf{(B)}\ 20,790 \qquad \textbf{(C)}\ 21,560 \qquad \textbf{(D)}\ 27,720 \qquad \textbf{(E)}\ 41,580$

2011 Purple Comet Problems, 11

How many numbers are there that appear both in the arithmetic sequence $10, 16, 22, 28, ... 1000$ and the arithmetic sequence $10, 21, 32, 43, ..., 1000?$

1998 Tournament Of Towns, 1

(a) Prove that for any two positive integers a and b the equation $lcm (a, a + 5) = lcm (b, b + 5)$ implies $a = b$. (b) Is it possible that $lcm (a, b) = lcm (a + c, b + c)$ for positive integers $a, b$ and $c$? (A Shapovalov) PS. part (a) for Juniors, both part for Seniors

2013 Korea Junior Math Olympiad, 6

Find all functions $f : \mathbb{N} \rightarrow \mathbb{N} $ satisfying \[ f(mn) = \operatorname{lcm} (m,n) \cdot \gcd( f(m), f(n) ) \] for all positive integer $m,n$.

2014 Contests, 4

(a) Let $a,x,y$ be positive integers. Prove: if $x\ne y$, the also \[ax+\gcd(a,x)+\text{lcm}(a,x)\ne ay+\gcd(a,y)+\text{lcm}(a,y).\] (b) Show that there are no two positive integers $a$ and $b$ such that \[ab+\gcd(a,b)+\text{lcm}(a,b)=2014.\]

2011 Regional Competition For Advanced Students, 4

Define the sequence $(a_n)_{n=1}^\infty$ of positive integers by $a_1=1$ and the condition that $a_{n+1}$ is the least integer such that \[\mathrm{lcm}(a_1, a_2, \ldots, a_{n+1})>\mathrm{lcm}(a_1, a_2, \ldots, a_n)\mbox{.}\] Determine the set of elements of $(a_n)$.

2013 Tournament of Towns, 3

Denote by $[a, b]$ the least common multiple of $a$ and $b$. Let $n$ be a positive integer such that $[n, n + 1] > [n, n + 2] >...> [n, n + 35]$. Prove that $[n, n + 35] > [n,n + 36]$.

2000 Manhattan Mathematical Olympiad, 2

How many zeroes are there at the end the number $9^{999} + 1$?

2010 Indonesia TST, 3

For every natural number $ n $, define $ s(n) $ as the smallest natural number so that for every natural number $ a $ relatively prime to $n$, this equation holds: \[ a^{s(n)} \equiv 1 (mod n) \] Find all natural numbers $ n $ such that $ s(n) = 2010 $

1998 Dutch Mathematical Olympiad, 3

Let $m$ and $n$ be positive integers such that $m - n = 189$ and such that the least common multiple of $m$ and $n$ is equal to $133866$. Find $m$ and $n$.

2021 China Team Selection Test, 6

Given positive integer $n$ and $r$ pairwise distinct primes $p_1,p_2,\cdots,p_r.$ Initially, there are $(n+1)^r$ numbers written on the blackboard: $p_1^{i_1}p_2^{i_2}\cdots p_r^{i_r} (0 \le i_1,i_2,\cdots,i_r \le n).$ Alice and Bob play a game by making a move by turns, with Alice going first. In Alice's round, she erases two numbers $a,b$ (not necessarily different) and write $\gcd(a,b)$. In Bob's round, he erases two numbers $a,b$ (not necessarily different) and write $\mathrm{lcm} (a,b)$. The game ends when only one number remains on the blackboard. Determine the minimal possible $M$ such that Alice could guarantee the remaining number no greater than $M$, regardless of Bob's move.

2001 Tournament Of Towns, 2

Do there exist positive integers $a_1<a_2<\ldots<a_{100}$ such that for $2\le k\le100$, the least common multiple of $a_{k-1}$ and $a_k$ is greater than the least common multiple of $a_k$ and $a_{k+1}$?

2013 District Olympiad, 4

At the top of a piece of paper is written a list of distinctive natural numbers. To continue the list you must choose 2 numbers from the existent ones and write in the list the least common multiple of them, on the condition that it isn’t written yet. We can say that the list is closed if there are no other solutions left (for example, the list 2, 3, 4, 6 closes right after we add 12). Which is the maximum numbers which can be written on a list that had closed, if the list had at the beginning 10 numbers?

2020 AMC 12/AHSME, 21

How many positive integers $n$ are there such that $n$ is a multiple of $5$, and the least common multiple of $5!$ and $n$ equals $5$ times the greatest common divisor of $10!$ and $n?$ $\textbf{(A) } 12 \qquad \textbf{(B) } 24 \qquad \textbf{(C) } 36 \qquad \textbf{(D) } 48 \qquad \textbf{(E) } 72$

1982 IMO Longlists, 1

[b](a)[/b] Prove that $\frac{1}{n+1} \cdot \binom{2n}{n}$ is an integer for $n \geq 0.$ [b](b)[/b] Given a positive integer $k$, determine the smallest integer $C_k$ with the property that $\frac{C_k}{n+k+1} \cdot \binom{2n}{n}$ is an integer for all $n \geq k.$

2011 Iran Team Selection Test, 2

Find all natural numbers $n$ greater than $2$ such that there exist $n$ natural numbers $a_{1},a_{2},\ldots,a_{n}$ such that they are not all equal, and the sequence $a_{1}a_{2},a_{2}a_{3},\ldots,a_{n}a_{1}$ forms an arithmetic progression with nonzero common difference.

2011 South africa National Olympiad, 3

We call a sequence of $m$ consecutive integers a [i]friendly[/i] sequence if its first term is divisible by $1$, the second by $2$, ..., the $(m-1)^{th}$ by $m-1$, and in addition, the last term is divisible by $m^2$ Does a friendly sequence exist for (a) $m=20$ and (b) $m=11$?

2005 Romania National Olympiad, 3

Let $X_1,X_2,\ldots,X_m$ a numbering of the $m=2^n-1$ non-empty subsets of the set $\{1,2,\ldots,n\}$, $n\geq 2$. We consider the matrix $(a_{ij})_{1\leq i,j\leq m}$, where $a_{ij}=0$, if $X_i \cap X_j = \emptyset$, and $a_{ij}=1$ otherwise. Prove that the determinant $d$ of this matrix does not depend on the way the numbering was done and compute $d$.

2024 Taiwan Mathematics Olympiad, 2

A positive integer is [b]superb[/b] if it is the least common multiple of $1,2,\ldots, n$ for some positive integer $n$. Find all superb $x,y,z$ such that $x+y=z$. [i] Proposed by usjl[/i]

2003 Germany Team Selection Test, 3

Let $N$ be a natural number and $x_1, \ldots , x_n$ further natural numbers less than $N$ and such that the least common multiple of any two of these $n$ numbers is greater than $N$. Prove that the sum of the reciprocals of these $n$ numbers is always less than $2$: $\sum^n_{i=1} \frac{1}{x_i} < 2.$

1953 Moscow Mathematical Olympiad, 244

Prove that $gcd (a + b, lcm(a, b)) = gcd (a, b)$ for any $a, b$.

2004 Italy TST, 2

A positive integer $n$ is said to be a [i]perfect power[/i] if $n=a^b$ for some integers $a,b$ with $b>1$. $(\text{a})$ Find $2004$ perfect powers in arithmetic progression. $(\text{b})$ Prove that perfect powers cannot form an infinite arithmetic progression.

2015 Mathematical Talent Reward Programme, SAQ: P 5

Let $a$ be the smallest and $A$ the largest of $n$ distinct positive integers. Prove that the least common multiple of these numbers is greater than or equal to $n a$ and that the greatest common divisor is less than or equal to $\frac{A}{n}$

2007 Korea Junior Math Olympiad, 2

If $n$ is a positive integer and $a, b$ are relatively prime positive integers, calculate $(a + b,a^n + b^n)$.

2005 Taiwan TST Round 1, 3

Find all positive integer triples $(x,y,z)$ such that $x<y<z$, $\gcd (x,y)=6$, $\gcd (y,z)=10$, $\gcd (x,z)=8$, and lcm$(x,y,z)=2400$. Note that the problems of the TST are not arranged in difficulty (Problem 1 of day 1 was probably the most difficult!)