This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2001 SNSB Admission, 3

Let be an $ n\times n $ positive-definite symmetric real matrix $ A. $ Prove the following equality. $$ \tiny\int_{\mathbb{R}^n} \exp\left( -\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n\end{pmatrix}^\intercal A\begin{pmatrix} x_1\\ x_2\\ \vdots \\ x_n\end{pmatrix}\right) dx_1dx_2\cdots dx_n=\normalsize\frac{\pi^{n/2}}{\sqrt{\det A} } $$