This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

2018 IMO, 5

Let $a_1$, $a_2$, $\ldots$ be an infinite sequence of positive integers. Suppose that there is an integer $N > 1$ such that, for each $n \geq N$, the number $$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$ is an integer. Prove that there is a positive integer $M$ such that $a_m = a_{m+1}$ for all $m \geq M$. [i]Proposed by Bayarmagnai Gombodorj, Mongolia[/i]

IMSC 2024, 6

Let $a\equiv 1\pmod{4}$ be a positive integer. Show that any polynomial $Q\in\mathbb{Z}[X]$ with all positive coefficients such that $$Q(n+1)((a+1)^{Q(n)}-a^{Q(n)})$$ is a perfect square for any $n\in\mathbb{N}^{\ast}$ must be a constant polynomial. [i]Proposed by Vlad Matei, Romania[/i]

2015 Baltic Way, 17

Find all positive integers $n$ for which $n^{n-1} - 1$ is divisible by $2^{2015}$, but not by $2^{2016}$.

2017 SG Originals, Q4

Call a rational number $r$ [i]powerful[/i] if $r$ can be expressed in the form $\dfrac{p^k}{q}$ for some relatively prime positive integers $p, q$ and some integer $k >1$. Let $a, b, c$ be positive rational numbers such that $abc = 1$. Suppose there exist positive integers $x, y, z$ such that $a^x + b^y + c^z$ is an integer. Prove that $a, b, c$ are all [i]powerful[/i]. [i]Jeck Lim, Singapore[/i]

2017 APMO, 4

Call a rational number $r$ [i]powerful[/i] if $r$ can be expressed in the form $\dfrac{p^k}{q}$ for some relatively prime positive integers $p, q$ and some integer $k >1$. Let $a, b, c$ be positive rational numbers such that $abc = 1$. Suppose there exist positive integers $x, y, z$ such that $a^x + b^y + c^z$ is an integer. Prove that $a, b, c$ are all [i]powerful[/i]. [i]Jeck Lim, Singapore[/i]

2017 Brazil Team Selection Test, 4

Call a rational number $r$ [i]powerful[/i] if $r$ can be expressed in the form $\dfrac{p^k}{q}$ for some relatively prime positive integers $p, q$ and some integer $k >1$. Let $a, b, c$ be positive rational numbers such that $abc = 1$. Suppose there exist positive integers $x, y, z$ such that $a^x + b^y + c^z$ is an integer. Prove that $a, b, c$ are all [i]powerful[/i]. [i]Jeck Lim, Singapore[/i]

2018 IMO Shortlist, N4

Let $a_1$, $a_2$, $\ldots$ be an infinite sequence of positive integers. Suppose that there is an integer $N > 1$ such that, for each $n \geq N$, the number $$\frac{a_1}{a_2} + \frac{a_2}{a_3} + \cdots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$$ is an integer. Prove that there is a positive integer $M$ such that $a_m = a_{m+1}$ for all $m \geq M$. [i]Proposed by Bayarmagnai Gombodorj, Mongolia[/i]

2018 AIME Problems, 11

Find the least positive integer $n$ such that when $3^n$ is written in base $143$, its two right-most digits in base $143$ are $01$.