This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1963 Putnam, A4

Tags: limsup , sequence
Let $(a_n)$ be a sequence of positive real numbers. Show that $$ \limsup_{n \to \infty} n \left(\frac{1 +a_{n+1}}{a_n } -1 \right) \geq 1$$ and prove that $1$ cannot be replaced by any larger number.