This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 11

2016 District Olympiad, 2

Show that: $$ 2015\in\left\{ x_1+2x_2+3x_3\cdots +2015x_{2015}\big| x_1,x_2,\ldots ,x_{2015}\in \{ -2,3\}\right\}\not\ni 2016. $$

2016 Vietnam National Olympiad, 2

a) Let $(a_n)$ be the sequence defined by $a_n=\ln (2n^2+1)-\ln (n^2+n+1)\,\,\forall n\geq 1.$ Prove that the set $\{n\in\mathbb{N}|\,\{a_n\}<\dfrac{1}{2}\}$ is a finite set; b) Let $(b_n)$ be the sequence defined by $a_n=\ln (2n^2+1)+\ln (n^2+n+1)\,\,\forall n\geq 1$. Prove that the set $\{n\in\mathbb{N}|\,\{b_n\}<\dfrac{1}{2016}\}$ is an infinite set.

2020 IMO Shortlist, A2

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2021 Latvia TST, 2.3

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2016 Croatia Team Selection Test, Problem 2

Let $N$ be a positive integer. Consider a $N \times N$ array of square unit cells. Two corner cells that lie on the same longest diagonal are colored black, and the rest of the array is white. A [i]move[/i] consists of choosing a row or a column and changing the color of every cell in the chosen row or column. What is the minimal number of additional cells that one has to color black such that, after a finite number of moves, a completely black board can be reached?

2021 Thailand TST, 1

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2016 Croatia Team Selection Test, Problem 2

Let $N$ be a positive integer. Consider a $N \times N$ array of square unit cells. Two corner cells that lie on the same longest diagonal are colored black, and the rest of the array is white. A [i]move[/i] consists of choosing a row or a column and changing the color of every cell in the chosen row or column. What is the minimal number of additional cells that one has to color black such that, after a finite number of moves, a completely black board can be reached?

2019 IMAR Test, 2

Let $ f_1,f_2,f_3,f_4 $ be four polynomials with real coefficients, having the property that $$ f_1 (1) =f_2 (0), \quad f_2 (1) =f_3 (0),\quad f_3 (1) =f_4 (0),\quad f_4 (1) =f_1 (0) . $$ Prove that there exists a polynomial $ f\in\mathbb{R}[X,Y] $ such that $$ f(X,0)=f_1(X),\quad f(1,Y) =f_2(Y) ,\quad f(1-X,1) =f_3(X),\quad f(0,1-Y)=f_4(Y) . $$

2016 ITAMO, 6

A mysterious machine contains a secret combination of $2016$ integer numbers $x_1,x_2,\ldots,x_{2016}$. It is known that all the numbers in the combination are equal but one. One may ask questions to the machine by giving to it a sequence of $2016$ integer numbers $y_1,\ldots,y_{2016}$, and the machine answers by telling the value of the sum \[ x_1y_1+\dots+x_{2016}y_{2016}. \] After answering the first question, the machine accepts a second question and then a third one, and so on. Determine how many questions are necessary to determine the combination: (a) knowing that the number which is different from the others is equal to zero; (b) not knowing what the number different from the others is.

2021 Taiwan TST Round 1, A

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.

2021 Azerbaijan IMO TST, 1

Let $\mathcal{A}$ denote the set of all polynomials in three variables $x, y, z$ with integer coefficients. Let $\mathcal{B}$ denote the subset of $\mathcal{A}$ formed by all polynomials which can be expressed as \begin{align*} (x + y + z)P(x, y, z) + (xy + yz + zx)Q(x, y, z) + xyzR(x, y, z) \end{align*} with $P, Q, R \in \mathcal{A}$. Find the smallest non-negative integer $n$ such that $x^i y^j z^k \in \mathcal{B}$ for all non-negative integers $i, j, k$ satisfying $i + j + k \geq n$.