This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

1984 IMO Longlists, 16

The harmonic table is a triangular array: $1$ $\frac 12 \qquad \frac 12$ $\frac 13 \qquad \frac 16 \qquad \frac 13$ $\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$ Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.

1988 IMO Shortlist, 1

An integer sequence is defined by \[{ a_n = 2 a_{n-1} + a_{n-2}}, \quad (n > 1), \quad a_0 = 0, a_1 = 1.\] Prove that $2^k$ divides $a_n$ if and only if $2^k$ divides $n$.

PEN L Problems, 13

The sequence $\{x_{n}\}_{n \ge 1}$ is defined by \[x_{1}=x_{2}=1, \; x_{n+2}= 14x_{n+1}-x_{n}-4.\] Prove that $x_{n}$ is always a perfect square.

PEN L Problems, 1

An integer sequence $\{a_{n}\}_{n \ge 1}$ is defined by \[a_{0}=0, \; a_{1}=1, \; a_{n+2}=2a_{n+1}+a_{n}\] Show that $2^{k}$ divides $a_{n}$ if and only if $2^{k}$ divides $n$.

1984 IMO Shortlist, 6

Let $c$ be a positive integer. The sequence $\{f_n\}$ is defined as follows: \[f_1 = 1, f_2 = c, f_{n+1} = 2f_n - f_{n-1} + 2 \quad (n \geq 2).\] Show that for each $k \in \mathbb N$ there exists $r \in \mathbb N$ such that $f_kf_{k+1}= f_r.$

1999 Vietnam National Olympiad, 3

Let $\{x_{n}\}_{n\ge0}$ and $\{y_{n}\}_{n\ge0}$ be two sequences defined recursively as follows \[x_{0}=1, \; x_{1}=4, \; x_{n+2}=3 x_{n+1}-x_{n},\] \[y_{0}=1, \; y_{1}=2, \; y_{n+2}=3 y_{n+1}-y_{n}.\] [list=a][*] Prove that ${x_{n}}^{2}-5{y_{n}}^{2}+4=0$ for all non-negative integers. [*] Suppose that $a$, $b$ are two positive integers such that $a^{2}-5b^{2}+4=0$. Prove that there exists a non-negative integer $k$ such that $a=x_{k}$ and $b=y_{k}$.[/list]

1988 IMO Shortlist, 24

Let $ \{a_k\}^{\infty}_1$ be a sequence of non-negative real numbers such that: \[ a_k \minus{} 2 a_{k \plus{} 1} \plus{} a_{k \plus{} 2} \geq 0 \] and $ \sum^k_{j \equal{} 1} a_j \leq 1$ for all $ k \equal{} 1,2, \ldots$. Prove that: \[ 0 \leq a_{k} \minus{} a_{k \plus{} 1} < \frac {2}{k^2} \] for all $ k \equal{} 1,2, \ldots$.

PEN L Problems, 11

Let the sequence $\{K_{n}\}_{n \ge 1}$ be defined by \[K_{1}=2, K_{2}=8, K_{n+2}=3K_{n+1}-K_{n}+5(-1)^{n}.\] Prove that if $K_{n}$ is prime, then $n$ must be a power of $3$.