Found problems: 6
2011 ELMO Shortlist, 3
Wanda the Worm likes to eat Pascal's triangle. One day, she starts at the top of the triangle and eats $\textstyle\binom{0}{0}=1$. Each move, she travels to an adjacent positive integer and eats it, but she can never return to a spot that she has previously eaten. If Wanda can never eat numbers $a,b,c$ such that $a+b=c$, prove that it is possible for her to eat 100,000 numbers in the first 2011 rows given that she is not restricted to traveling only in the first 2011 rows.
(Here, the $n+1$st row of Pascal's triangle consists of entries of the form $\textstyle\binom{n}{k}$ for integers $0\le k\le n$. Thus, the entry $\textstyle\binom{n}{k}$ is considered adjacent to the entries $\textstyle\binom{n-1}{k-1}$, $\textstyle\binom{n-1}{k}$, $\textstyle\binom{n}{k-1}$, $\textstyle\binom{n}{k+1}$, $\textstyle\binom{n+1}{k}$, $\textstyle\binom{n+1}{k+1}$.)
[i]Linus Hamilton.[/i]
2011 ELMO Problems, 2
Wanda the Worm likes to eat Pascal's triangle. One day, she starts at the top of the triangle and eats $\textstyle\binom{0}{0}=1$. Each move, she travels to an adjacent positive integer and eats it, but she can never return to a spot that she has previously eaten. If Wanda can never eat numbers $a,b,c$ such that $a+b=c$, prove that it is possible for her to eat 100,000 numbers in the first 2011 rows given that she is not restricted to traveling only in the first 2011 rows.
(Here, the $n+1$st row of Pascal's triangle consists of entries of the form $\textstyle\binom{n}{k}$ for integers $0\le k\le n$. Thus, the entry $\textstyle\binom{n}{k}$ is considered adjacent to the entries $\textstyle\binom{n-1}{k-1}$, $\textstyle\binom{n-1}{k}$, $\textstyle\binom{n}{k-1}$, $\textstyle\binom{n}{k+1}$, $\textstyle\binom{n+1}{k}$, $\textstyle\binom{n+1}{k+1}$.)
[i]Linus Hamilton.[/i]
2013 IFYM, Sozopol, 7
Let $n\in \mathbb{N}$. Prove that
$lcm [1,2,..,n]=lcm [\binom{n}{1},\binom{n}{2},...,\binom{n}{n}]$
if and only if $n+1$ is a prime number.
2011 ELMO Shortlist, 3
Wanda the Worm likes to eat Pascal's triangle. One day, she starts at the top of the triangle and eats $\textstyle\binom{0}{0}=1$. Each move, she travels to an adjacent positive integer and eats it, but she can never return to a spot that she has previously eaten. If Wanda can never eat numbers $a,b,c$ such that $a+b=c$, prove that it is possible for her to eat 100,000 numbers in the first 2011 rows given that she is not restricted to traveling only in the first 2011 rows.
(Here, the $n+1$st row of Pascal's triangle consists of entries of the form $\textstyle\binom{n}{k}$ for integers $0\le k\le n$. Thus, the entry $\textstyle\binom{n}{k}$ is considered adjacent to the entries $\textstyle\binom{n-1}{k-1}$, $\textstyle\binom{n-1}{k}$, $\textstyle\binom{n}{k-1}$, $\textstyle\binom{n}{k+1}$, $\textstyle\binom{n+1}{k}$, $\textstyle\binom{n+1}{k+1}$.)
[i]Linus Hamilton.[/i]
2015 Rioplatense Mathematical Olympiad, Level 3, 5
For a positive integer number $n$ we denote $d(n)$ as the greatest common divisor of the binomial coefficients $\dbinom{n+1}{n} , \dbinom{n+2}{n} ,..., \dbinom{2n}{n}$.
Find all possible values of $d(n)$
2012 Iran Team Selection Test, 1
Find all positive integers $n \geq 2$ such that for all integers $i,j$ that $ 0 \leq i,j\leq n$ , $i+j$ and $ {n\choose i}+ {n \choose j}$ have same parity.
[i]Proposed by Mr.Etesami[/i]