This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2022 Centroamerican and Caribbean Math Olympiad, 5

Esteban the alchemist have $8088$ copper pieces, $6066$ bronze pieces, $4044$ silver pieces and $2022$ gold pieces. He can take two pieces of different metals and use a magic hammer to turn them into two pieces of different metals that he take and different each other. Find the largest number of gold pieces that Esteban can obtain after using the magic hammer a finite number of times. $\textbf{Note:}$ [i]If Esteban takes a copper and bronze pieces, then he turn them into a silver and a gold pieces.[/i]

2001 Spain Mathematical Olympiad, Problem 4

The integers between $1$ and $9$ inclusive are distributed in the units of a $3$ x $3$ table. You sum six numbers of three digits: three that are read in the rows from left to right, and three that are read in the columns from top to bottom. Is there any such distribution for which the value of this sum is equal to $2001$?