This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2017 Brazil Undergrad MO, 5

Let $d\leq n$ be positive integers and $A$ a real $d\times n$ matrix. Let $\sigma(A)$ be the supremum of $\inf_{v\in W,|v|=1}|Av|$ over all subspaces $W$ of $R^n$ with dimension $d$. For each $j \leq d$, let $r(j) \in \mathbb{R}^n$ be the $j$th row vector of $A$. Show that: \[\sigma(A) \leq \min_{i\leq d} d(r(i), \langle r(j), j\ne i\rangle) \leq \sqrt{n}\sigma(A)\] In which all are euclidian norms and $d(r(i), \langle r(j), j\ne i\rangle)$ denotes the distance between $r(i)$ and the span of $r(j), 1 \leq j \leq d, j\ne i$.