This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2012 Centers of Excellency of Suceava, 2

Show that $$ \left\{ X\in\mathcal{M}_2\left( \mathbb{Z}_3 \right)\left| \begin{pmatrix} 1&1\\2&2 \end{pmatrix} X\begin{pmatrix} 1&2\\2&1 \end{pmatrix} =0 \right. \right\} $$ is a multiplicative ring. [i]Cătălin Țigăeru[/i]