This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 3rd Memorial "Aleksandar Blazhevski-Cane", P5

We say that a positive integer $n$ is [i]memorable[/i] if it has a binary representation with strictly more $1$'s than $0$'s (for example $25$ is memorable because $25=(11001)_{2}$ has more $1$'s than $0$'s). Are there infinitely many memorable perfect squares? [i]Proposed by Nikola Velov[/i]