This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2017 Iran MO (3rd round), 2

Let $a,b,c$ and $d$ be positive real numbers such that $a^2+b^2+c^2+d^2 \ge 4$. Prove that $$(a+b)^3+(c+d)^3+2(a^2+b^2+c^2+d^2) \ge 4(ab+bc+cd+da+ac+bd)$$